100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary DMfB&G

Puntuación
-
Vendido
-
Páginas
47
Subido en
09-09-2022
Escrito en
2021/2022

All the needed information

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
9 de septiembre de 2022
Número de páginas
47
Escrito en
2021/2022
Tipo
Resumen

Temas

Vista previa del contenido

Lecture 1: Introduction to Data Mining
What is data mining?
“Data mining is the study of collecting, cleaning, processing, analyzing, and gaining useful
insights from data”.

It is an umbrella term and the methods used relates to different disciplines:
- Knowledge discovery in databases
- Statistics
- Artificial intelligence (important)
- Machine learning perspective (important)

Key aspects:
- Computation vs large data sets:
Trade-off between processing time and memory
- Computation enables analysis of large data sets:
Computers as a tool and with growing data
- Data mining often implies knowledge discovery from databases
From unstructured data to structured knowledge

What are large amounts or Big Data?
(is not only about the size of the data, which is volume but also about the complexity)
Volume:
- Too big for manual analysis
- Too big to fit in RAM
- Too big to store on disk

Variety:
- Range of values: variance
- Outliers, confounders and noise
- Different data types

Velocity:
- Data changes quickly: require results before data changes
- Streaming data (no storage)




1

,Application of data mining




Overview of basic data types
Data points represents by certain domain, is there any relationship or not?




How does it work? The general pipeline of data mining set




The steps above depend on the problem as well as the approach. Some approaches do not
require and explicit feature extraction.


2

,What makes prediction possible?
Fitting data is easy, but predictions are hard.
- Associations between features/target (how the points are related/associated?)
- Numerical: correlation coefficient
- Categorical: mutual information value of x1 contains information about value of x2 (it
is usually common that the sport cars will have a red color- mutual information)

Statistical descriptions of data
1. Measures of central tendency:
- Mean: average
- Median: the middle value in a set of ordered data value
- Mode: the mode for a set of data is the value that occurs most frequently in the set




2. Measuring the spread of data, five number summary:
- Range: difference between max() and min() value
- Quantiles: points taken at regular intervals of a data distribution, dividing it into
essentially equal size consecutive sets. The quantile is the median, the 4 quantiles
are quartiles (3 data points Q1, Q2,Q3), and 100 quartiles are percentiles.
- Interquartile range: IQR = difference between Q3- Q1




Basic plots: box plot
Includes Q1, median, Q3, min and max values as well as outliers, points that are at least 1,5
IQR further away from Q1 and Q3.




3

, 3. Measuring the dispersion of data
- Variance σ2, measures how far each number in the set is from the mean and thus
from every other number in the set.
- Standard deviation σ, how dispersed the data is in relation to the mean. Low
standard deviation means data are clustered around the mean, and high standard
deviation indicates data are more spread out




Basic plots: scatter plot




Correlation coefficient
Pearson's r measures the strength of linear relationship (dependency), how things (two
points) are moving together(1 or -1=perfectly aligned , 0 no moving together)




Person’s correlation coefficient
- Numerator: covariance. To what extent the features change together.
- Denominator: product of standard deviations. Makes correlations independent of
units.




4
$7.83
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
adata Tilburg University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
28
Miembro desde
4 año
Número de seguidores
15
Documentos
12
Última venta
7 meses hace

2.0

2 reseñas

5
0
4
0
3
0
2
2
1
0

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes