100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

Aerodynamics Lecture 7

Puntuación
-
Vendido
-
Páginas
5
Subido en
23-08-2022
Escrito en
2022/2023

The 7th lecture on Aerodynamics for 1st year Aeronautical Engieering students at Imperial College London covering the foundations of the subjects in depth and in detail

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Estudio
Desconocido
Grado

Información del documento

Subido en
23 de agosto de 2022
Número de páginas
5
Escrito en
2022/2023
Tipo
Notas de lectura
Profesor(es)
Dr sherwin
Contiene
Todas las clases

Temas

Vista previa del contenido

A101 Introduction to Aerodynamics Section 1-7
__________________________________________________________________________
Outline

• Last lecture we introduced the idea of Dimensional Analysis
• We have discussed the physical meaning of the important non-dimensional number
Reynolds number.
• Today we will discuss and equally important non-dimensional number the Mach number
• Finally we will look at a more general approach to finding the non-dimensional numbers
and Buckingham’s Rule.

Mach Number

The Mach number is the ratio of flow velocity to the speed of sound typically denoted by M,
i.e.

speed of flow
M= = a-
speed of sound
a


• An aircraft flying at M = 2 can have regions of flow over its surface where the local Mach
number is higher than 2. Similarly, for an aircraft travelling below M=1 there can still be
a shock wave generated at a point of high velocity when locally M>1.

• It can be shown that for a perfect gas that a2 = γP/ρ.
j=Cp/Cv
heat
For an ideal fluid P = PRT cpccv) - amount
of
to raise temperature
2
a = ✓ RT FRY required constant
Kat pressure
by
a -




( volume)
where γ =
speigi ratio of specific heats capacities at constant pressure anduniversal
constant
volume
R=Ro_ gas
= 1.4 at S.T.P.
Molecular constant
R = specific gas constant for air (0.287) KJ/(Kg K)
weight
So the speed of sound increases with temperature and therefore reduces with height. See
lecture 1-5 for variation of ρ,T and p with height.


• If the Mach numbers are the same for both model and full scale conditions then the
effects of compressibility will be the same. This is important to achieve the same shock
wave patterns.



1

, A101 Introduction to Aerodynamics Section 1-7
__________________________________________________________________________


• If M < O 3 then the effects of compressibility are unlikely to be important and hence
.




M no longer needs to be considered. In air this corresponds to U < 100m/s, as a rough
guide. (see Thermodynamics lecture notes).

Dimensional Analysis: Buckingham’s Rule

We have seen that two important non-dimensional parameters of the flow are the Reynolds
number and the Mach number. How do we know if there are any more important non-
dimensional numbers?

To apply dimensional analysis in a more formal manner we can consider an approach
attributed to Buckingham. Let us consider the problems of determining the non-dimensional
parameters that the lift on a wing, L, depend on? First we need to identify the variables of our
problem which are: inertial Woof
Re =

.




forces fores
.




1. Free stream speed u -




2. Size of the wing A -




dynamic viscosity
3. Density of air
Pm in
-
-




4. Viscosity of air

¥
5. The speed of sound = Rmimatie
viscosity
L= f-
( u. A , P , Me a
)
As we have discussed before it is better practice to consider a dimensionless form of L, i.e.
the lift coefficient

L
= C L = f 1 (U, ρ , A, µ , a)
1 2
ρU A
2
CL = f1 (one or more dimensionless parameters or groups)


The formal way of finding the groups is as follows:

• The relation f1, whatever it is, can be expressed as a power series. The argument of the
power series must be dimensionless or successive terms can not have the same
dimensions. Write a typical term as

α γ δ θ
f1(U,ρ,A,µ,a) = …. + c U ρβ A µ a + .....
x
constant
2
$8.91
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
radon8606

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
radon8606 Imperial College London
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
4 año
Número de seguidores
0
Documentos
8
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes