100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Inequalities solved questions

Puntuación
-
Vendido
-
Páginas
4
Grado
A+
Subido en
18-07-2022
Escrito en
2021/2022

Inequalities solved questions

Institución
Grado








Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
18 de julio de 2022
Número de páginas
4
Escrito en
2021/2022
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

HAPTER 1
nequalities

1.1 Solve 3 + 2*<7.
2x < 4 [Subtract 3 from both sides. This is equivalent to adding -3 to both sides.]
Answer x<2 [Divide both sides by 2. This is equivalent to multiplying by 5.] In interval notation, the
solution is the set (—°°, 2).

1.2 Solve 5 - 3* < 5x + 2.
5-3>x<5x + 2, 5<8* + 2 [Add 3x to both sides.], 3<8* [Subtract 2 from both sides.]
Answer 1 <x [Divide both sides by 8.] In interval notation, the solution is the set (|,°°).

1.3 Solve -7<2x + 5<9.
-7 < 2* + 5 < 9, -12 < 2x < 4 [Subtract 5 from all terms.]
Answer — 6 < x < 2 [Divide by 2.] In interval notation, the solution is the set (—6,2).

1.4 Solve 3 < 4 x - l < 5 .
3<4x-l<5, 4<4x<6 [Add 1 to all terms.]
Answer 1 s x < \ [Divide by 4.] In interval notation, the solution is the set [1, |).

1.5 Solve 4<-2x + 5<7.
4<-2x + 5<7, -K-2jc<2 [Subtracts.]
Answer \ >*>-! [Divide by -2. Since -2 is negative, we must reverse the inequalities.] In interval
notation, the solution is the set [-1, |).

1.6 Solve 5 < \x. + 1 s 6.
5<|x + l<6, 4<|*s5 [Subtract 1.]
Answer 12<^sl5 [Multiply by 3.] In interval notation, the solution is the set [12,15].

1.7 Solve 2/jc<3.
x may be positive or negative. Case 1. x>0. 2/x<3. 2<3x [Multiply by AC.], |<jc [Divide by 3.]
Case 2. x<0. 2/x<3. 2>3x [Multiply by jr. Reverse the inequality.], |>jc [Divide by 3.] Notice
that this condition |>x is satisfied whenever jc<0. Hence, in the case where x < 0 , the inequality is
satisfied by all such x.
Answer f < x or x < 0. As shown in Fig. 1-1, the solution is the union of the intervals (1,«) and (—°°, 0).




Fig. 1-1

1.8 Solve




We cannot simply multiply both sides by x - 3, because we do not know whether x - 3 is positive or
negative. Case 1. x-3>0 [This is equivalent to x>3.] Multiplying the given inequality (1) by the
positive quantity x-3 preserves the inequality: * + 4<2;t-6, 4 < x - 6 [Subtract jr.], 10<x [Add
6.] Thus, when x>3, the given inequality holds when and only when x>10. Case 2. x-3<0 [This
is equivalent to x<3]. Multiplying the given inequality (1) by the negative quantity x — 3 reverses the
inequality: * + 4>2*-6, 4>x-6 [Subtract*.], 10>x [Add 6.] Thus, when x<3, the inequality

1
$9.10
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
jureloqoo

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
jureloqoo METU
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
3 año
Número de seguidores
0
Documentos
46
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes