100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

solved questions for calculus

Puntuación
-
Vendido
-
Páginas
12
Grado
A+
Subido en
18-07-2022
Escrito en
2021/2022

solved questions for calculus

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
18 de julio de 2022
Número de páginas
12
Escrito en
2021/2022
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

CHAPTER 22
Volume

22.1 Derive the formula V= jirr 3 for the volume of a sphere of radius r.
Consider the upper semicircle y = Vr2 - x2 (Fig. 22-1). If we rotate it about the x-axis, the
sphere of radius r results. By the disk formula, V= TT Jl y2 dx = TT |I (r2 - x2) dx = ir(r2x - j*3) lr_ =
TKr3-ir3)-(-rJ+ir3)]=^r3.




Fig. 22-1 Fig. 22-2

22.2 Derive the formula V= \irr-h for the volume of a right circular cone of height h and radius of base r.
Refer to Fig. 22-2. Consider the right triangle with vertices (0,0), (h, 0), and (h,r). If this is rotated about
the x-axis, a right circular cone of height h and radius of base r results. Note that the hypotenuse of the triangle
lies on the line y = (r/h)x. Then, by the disk formula,



In Problems 22.3-22.19, find the volume generated by revolving the given region about the given axis.

22.3 The region above the curve y = jc3, under the line y = \, and between * = 0 and * = !; about the
AC-axis.
See Fig. 22-3. The upper curve is y = 1, and the lower curve is y = x3. We use the circular ring for-
mula: V = w Jo' [I2 - (x3)2] dx = rr(x - fce7) ]10 = TT(! - }) = f TT.




Fig. 22-3

22.4 The region of Problem 22.3, about the y-axis.
We integrate along the y-axis from 0 to 1. The upper curve is x = y1'3, the lower curve is the y-axis, and
we use the disk formula:

22.5 The region below the line y-2x, above the x-axis, and between jr = 0 and x = I; about the jc-axis.
(See Fig. 22-4.)
We use the disk formula:

173

, 174 CHAPTER 22




Fig. 22-4

22.6 The region of Problem 22.5, about the y-axis.
We use the cylindrical shell formula:

22.7 The region of Problem 21.39, about the jc-axis.
The curves intersect at (0, 0) and (1,1). The upper curve is and the lower curve is
We use the circular ring formula:


22.8 The region inside the circle x2 + y2 = r2 with 0<x<a<r; about the .y-axis. (This gives the volume cut
from a sphere of radius r by a pipe of radius a whose axis is a diameter of the sphere.)
We shall consider only the region above the *-axis (Fig. 22-5), and then, by symmetry, double the result. We
use the cylindrical shell formula:
We multiply by 2 to obtain the
answer




Fig. 22-5 Fig. 22-6

22.9 The region below the quarter-circle x2 + y2 = r2 (x>0, y >0) and above the line y = a, where 0 < a < r ;
about the y-axis. (This gives the volume of a polar cap of a sphere.)
See Fig. 22-6. We use the disk formula along the y-axis:


22.10 The region bounded by y = 1 + x2 and y = 5; about the x-axis. (See Fig. 22-7.)




Fig. 22-7
$9.10
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
jureloqoo

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
jureloqoo METU
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
3 año
Número de seguidores
0
Documentos
46
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes