100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

HCM Advanced Research Methods part 3: Combining methods (lectures/working groups)

Puntuación
-
Vendido
3
Páginas
14
Subido en
03-07-2022
Escrito en
2021/2022

Notes of the lectures and working groups from the third part of the course: advanced research methods. In this part the quantitative and qualitative methods are combined. My exam grade: 7.8 Master Healthcare Management.

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
3 de julio de 2022
Número de páginas
14
Escrito en
2021/2022
Tipo
Notas de lectura
Profesor(es)
Eshpm
Contiene
Todas las clases

Temas

Vista previa del contenido

Combining quantitative and qualitative methods – Advanced Research Methods – Joyce Rommens


Lecture 6: Synthesis: quantitative and qualitative methods

Quantitative part

Objectives segment 1:
- Explain the three different goals for quantitative research (associations)
- Explain how the strategy for descriptive research differs from the strategy for causal inference

1960-2010: methodological development focused on statistical methods
- Development of new techniques
- Improvements in computers and software
- Standardized tests, ‘objectivity’
- Helpful and harmful ® we can do more and better research, but people stopped thinking
themselves and rely on the software

® Associations can be seen in the data, but it is nothing more. What do they mean is up to the
researcher to determine.

Newer developments (not black and white)
- Causal theory
- What should be part of quantitative analysis?
- Interpretation: meaning of results depends on context

The largest part of a quantitative analysis is not about numbers.

Three possible aims to investigate associations:
- Causal inference
- Prediction
- Description

Distinguishing them makes sense, they have crucial differences in design, statistical methods,
interpretation, evaluation, role for theory/subject knowledge.

Causal inference Prediction Description
Goal Find causal effects Predict the future (or the past, or Describe patterns
- Counterfactual the current) - Identify patterns in
prediction: what if - Given what you observe the data
- Not only about what is, - No if - Matter of fact, goal
but also about what - What, given in itself
could be If you know A/B/C, what can you ® Potential starting point
say about D? for policy or further
(causal) research
Example 1. How does Netflix know what Excess mortality due to
films I like? ® watching one film coronavirus in different
makes it more likely that you will countries
like the other one too
2. Diagnosis: recognizing a
disease by the symptoms (reverse
causality a problem? ® no
because this is not about causal
inference)



1

, Combining quantitative and qualitative methods – Advanced Research Methods – Joyce Rommens


Research Why do some groups put more What kind of people will want Which groups are less open
questions value on screening than others: screening in the future? to screening?
causal inference (mediation
analysis) Background: What should the Background: In which
screening capacity in different groups could extra
Background: areas be? promotion be important?
development/testing of theory,
role of culture
Methods 1. Theory Driven 1. May be data driven: try what Bivariate associations:
2. DAG’s (exchangeability) works - Proportions/means
3. To block backdoor paths 2. Regression analysis can be /ratios per group
(randomisation, regression, used ® equation can be used for - Continuous
stratification, predictions on the individual level independent
weighting/matching) (with the first dataset, you variable ®
4. Consider blocking causal develop the regression equation correlation
paths (mediation) to predict outcomes in the coefficient
second dataset) (outdated, not
® sophisticated methods for intuitive); corm
regression may be required categories of
(prevent overfitting, the equation continuous
fits a certain dataset so well that independent
it is less suited for another variable; regression
dataset) with one
independent
No randomisation ® you do not variable
want to interfere.

No stratification ® will probably
not lead to precise predictions.

No weighting/matching ® would
require defining one exposure
Adjustment Yes! Otherwise, the results are No! This would obscure,
s affected by confounding bias remove, or increase the
due to a lack of exchangeability associations.
Results have no
interpretation anymore.
Interpretati Results have intrinsic meaning: Usually, no interest in 1. Direct, intuitive
on - Coeff represents interpretation of coeff for interpretation of
estimates of the individual predictors. Not useful: comparison of
(average) effect test whether there is an means/proportions/ratios
- Coeff in OLS association. 2. OLS coefficient
- Adjusted proportions - No clear intrinsic meaning
(average adjusted - No causal interpretation
predicted probabilities) - Coeff: ‘people with A were more
- RR, RD likely to have B/higher B, given all
- How strong is the other variables’
association?
CI Performance is crucial: evaluation
P-value may play a role of the model.




2
$7.18
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
joycerommens Erasmus Universiteit Rotterdam
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
81
Miembro desde
6 año
Número de seguidores
48
Documentos
29
Última venta
2 semanas hace

2.7

6 reseñas

5
0
4
1
3
3
2
1
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes