load ('outputsprong10.mat');
% stap 1 - scalaire spierkracht quads en hamstrings
Mkob_pos = Mkob.*(Mkob >= 0);
Mkob_neg = Mkob.*(Mkob <= 0);
% quads
d_quads = 0.05;
F_quadsob = Mkob_pos./d_quads;
% hamstrings
d_ham = 0.04;
F_hamob = Mkob_neg./d_ham.*-1;
Mkob_pos_10 = Mkob_pos * 10;
% plotje stap 1
% figure(1)
% plot(Mkob_pos_10, 'b')
% hold on
% plot(F_quadsob, 'r')
% hold on
% plot(F_hamob, 'g')
% title('Spierkrachten en moment rond knie');
% xlabel('tijd [1/200 s]')
% ylabel('krachten [N] en moment [Nm]')
% stap 2 - lokaal assenstelsel tibia
[yloctibia zloctibia] = createaxes(vecENKEL, vecKNIE);
% figure(2)
% plot(yloctibia)
% title('y-as tibia')
%
% figure(3)
% plot(zloctibia)
% title('z-as tibia')
% stap 3 - lokale assenstelsel nettokracht knie-onderbeen
Fkob_loc = projectglob2loc(yloctibia, zloctibia, Fkob);
% figure(4)
% plot(Fkob(:, 1), 'b')
% hold on
% plot(Fkob(:, 2), 'r')
% hold on
% plot(Fkob_loc(:, 1), 'g')
% hold on
% plot(Fkob_loc(:, 2), 'y')
% stap 4 - spierkracht vectoren lokale assenstelsel
% quads
hoekquads = -30;
rv_insor_quads_tibia = [-sind(hoekquads) cosd(hoekquads)];
Fvec_quads = F_quadsob * rv_insor_quads_tibia;
, % ham
hoekham = 20;
rv_insor_ham_tibia = [-sind(hoekham) cosd(hoekham)];
Fvec_ham = F_hamob * rv_insor_ham_tibia;
% stap 5 - echte gewrichtskracht
Fkob_echt = Fkob_loc - (Fvec_quads + Fvec_ham);
% figure(5)
% plot(Fvec_quads(:, 2), 'b')
% hold on
% plot(Fvec_ham(:, 2), 'r')
% hold on
% plot(Fkob_echt(:, 2), 'g')
% hold on
% plot(Fkob_loc(:, 2), 'y')
% title('Krachten in z-richting')
% xlabel('tijd [1/200 s]')
% ylabel('Kracht [N]')
% OPDRACHT 2
% 2.1 - Kracht gastrocnemius
Meob_pos = Meob.*(Meob >= 0);
M_gas_enkel = 0.5.*Meob_pos;
d_gas_enkel = 0.04;
F_gas_scalair = abs(M_gas_enkel./d_gas_enkel);
hoek_gas = 0;
rv_insor_gas_tibia = [sin(hoek_gas) cos(hoek_gas)]; % eigenlijk [0 1]
F_gas_vec = F_gas_scalair.*rv_insor_gas_tibia;
% 2.2 - Scalaire krachten
% Hamstrings biarticulair
d_ham_heup = 0.06;
Mheupbb_neg = Mheupbb.*(Mheupbb <= 0);
M_ham_bi = 0.5.*Mheupbb_neg;
F_ham_bi_scalair = abs(M_ham_bi./d_ham_heup);
% Quadriceps biarticulair
d_quad_heup = 0.08;
Mheupbb_pos = Mheupbb.*(Mheupbb >= 0);
M_quad_bi = 0.2.*Mheupbb_pos;
F_quad_bi_scalair = abs(M_quad_bi./d_quad_heup);
% figure(1)
% plot(F_gas_scalair, 'b')
% hold on
% plot(F_ham_bi_scalair, 'r')
% hold on
% plot(F_quad_bi_scalair, 'g')
% hold on
% plot(Meob, 'm')
% stap 1 - scalaire spierkracht quads en hamstrings
Mkob_pos = Mkob.*(Mkob >= 0);
Mkob_neg = Mkob.*(Mkob <= 0);
% quads
d_quads = 0.05;
F_quadsob = Mkob_pos./d_quads;
% hamstrings
d_ham = 0.04;
F_hamob = Mkob_neg./d_ham.*-1;
Mkob_pos_10 = Mkob_pos * 10;
% plotje stap 1
% figure(1)
% plot(Mkob_pos_10, 'b')
% hold on
% plot(F_quadsob, 'r')
% hold on
% plot(F_hamob, 'g')
% title('Spierkrachten en moment rond knie');
% xlabel('tijd [1/200 s]')
% ylabel('krachten [N] en moment [Nm]')
% stap 2 - lokaal assenstelsel tibia
[yloctibia zloctibia] = createaxes(vecENKEL, vecKNIE);
% figure(2)
% plot(yloctibia)
% title('y-as tibia')
%
% figure(3)
% plot(zloctibia)
% title('z-as tibia')
% stap 3 - lokale assenstelsel nettokracht knie-onderbeen
Fkob_loc = projectglob2loc(yloctibia, zloctibia, Fkob);
% figure(4)
% plot(Fkob(:, 1), 'b')
% hold on
% plot(Fkob(:, 2), 'r')
% hold on
% plot(Fkob_loc(:, 1), 'g')
% hold on
% plot(Fkob_loc(:, 2), 'y')
% stap 4 - spierkracht vectoren lokale assenstelsel
% quads
hoekquads = -30;
rv_insor_quads_tibia = [-sind(hoekquads) cosd(hoekquads)];
Fvec_quads = F_quadsob * rv_insor_quads_tibia;
, % ham
hoekham = 20;
rv_insor_ham_tibia = [-sind(hoekham) cosd(hoekham)];
Fvec_ham = F_hamob * rv_insor_ham_tibia;
% stap 5 - echte gewrichtskracht
Fkob_echt = Fkob_loc - (Fvec_quads + Fvec_ham);
% figure(5)
% plot(Fvec_quads(:, 2), 'b')
% hold on
% plot(Fvec_ham(:, 2), 'r')
% hold on
% plot(Fkob_echt(:, 2), 'g')
% hold on
% plot(Fkob_loc(:, 2), 'y')
% title('Krachten in z-richting')
% xlabel('tijd [1/200 s]')
% ylabel('Kracht [N]')
% OPDRACHT 2
% 2.1 - Kracht gastrocnemius
Meob_pos = Meob.*(Meob >= 0);
M_gas_enkel = 0.5.*Meob_pos;
d_gas_enkel = 0.04;
F_gas_scalair = abs(M_gas_enkel./d_gas_enkel);
hoek_gas = 0;
rv_insor_gas_tibia = [sin(hoek_gas) cos(hoek_gas)]; % eigenlijk [0 1]
F_gas_vec = F_gas_scalair.*rv_insor_gas_tibia;
% 2.2 - Scalaire krachten
% Hamstrings biarticulair
d_ham_heup = 0.06;
Mheupbb_neg = Mheupbb.*(Mheupbb <= 0);
M_ham_bi = 0.5.*Mheupbb_neg;
F_ham_bi_scalair = abs(M_ham_bi./d_ham_heup);
% Quadriceps biarticulair
d_quad_heup = 0.08;
Mheupbb_pos = Mheupbb.*(Mheupbb >= 0);
M_quad_bi = 0.2.*Mheupbb_pos;
F_quad_bi_scalair = abs(M_quad_bi./d_quad_heup);
% figure(1)
% plot(F_gas_scalair, 'b')
% hold on
% plot(F_ham_bi_scalair, 'r')
% hold on
% plot(F_quad_bi_scalair, 'g')
% hold on
% plot(Meob, 'm')