100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Computational Thinking Summary

Puntuación
-
Vendido
-
Páginas
17
Subido en
14-06-2022
Escrito en
2019/2020

Computational Thinking Summary

Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
14 de junio de 2022
Número de páginas
17
Escrito en
2019/2020
Tipo
Resumen

Temas

Vista previa del contenido

Computational Thinking Summary


Lecture 1: Solution strategies

How do we approach a problem?




Solution strategies

1. Try something (guess and check)
2. Go through all the possibilities
3. Divide the problem into several sub problems or steps
4. Use of formulas/equations
5. Discover a structure or pattern
6. Make a model
7. Brute force
8. Divide-and-conquer (D&C)

Try something (guess and check)

• Just try something to solve the problem and afterwards you check your answer.
- e.g., “How many coins do you need to get 5.20 Euro if you have 3 times as many 20
cent coins as 5 cent coins?”.

Go through all the possibilities

• Only suitable if the number of possibilities is limited.
- e.g., “How can measure exactly 15 minutes with these two hourglasses (7 minutes
and 11 minutes)?”. > no waste of time

Divide the problem into several sub problems or steps

• Sometimes a problem looks complex, but dividing it into steps it will make it easy.
• If you combine a few of these approaches the problem will be clear and solvable:
- Simplify
- Divide
- Back reasoning
- Exclude
• e.g., “Is the number Alex had in mind odd or even?”.
• In the last step, you should check General reasoning: “if x = even, then result is odd” and
“if x = odd, then the result is even”.


1

,Computational Thinking Summary


Use of formulas/equations

• Use X and/or Y
• Faster and more efficient than “Try something (guess and check)”
• e.g., “How many coins do you have?”
• Sequences and series:



&



Discover a structure or pattern

• Note that there is a pattern that repeats always after a certain amount of steps
• e.g., “What is the last digit of 777?”


Make a model

• Translate the text into a model (schematic representation)
• e.g., “Determine how far the slab in total has moved forward, if the rollers have made exactly
one rotation”

Brute force

• A simple approach to solve problems
• Uses computing power to solve problems with a computer without the use of algorithms or
heuristics to speed up the calculation
• Is used if no algorithm is know that is faster or more efficient which leads to a solution
• Just do it!

• Linear search
• Bubble sort

Divide-and-conquer (D&C)

• A general technique to design algorithms (design strategy)
• Only suited for parallel computations in which each subproblem can be solved simultaneously
by its own processor

• Binary search
• Merge sort
• Quick sort

1. Divide the problem into a number of small sub-problems of the same type and ideally
about the same size (divide)
2. Solve each sub-problem (recursively) (conquer)
3. Combine all these solutions into a solution to the original problem (combine)




2

, Computational Thinking Summary


Lecture 2: From algorithm to flowchart, recursion, pseudocode

From algorithm to flowchart

What is a flowchart?

• A graphical representation (diagram/chart) of an algorithm or process
• Consists of
- Data (shown in different plains)
- Arrows (connect the plains)
• Symbols of a flowchart




Why?

• An algorithm description (spoken language or pseudocode) can not be entered directly into a
computer > the algorithm has to be converted into a computer program
• Processes or programs
- To analyse
- To design
- To maintain
- To document
• Important in problem analysis and in finding an efficient solution


Recursion

• Recursion is a technique where a method or function calls itself
• Not a program statement, but just a technique

• Factorials
- Factorials call themselves until 0! is reached
- The function F! (x), stops itself to call in F! (0) = 1 and the value is returned to the
calling function
- In general F! (N) = N * (N – 1)




3
$8.07
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
TR19

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
TR19 Vrije Universiteit Amsterdam
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
9 año
Número de seguidores
0
Documentos
7
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes