100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Resumen

Summary Mathematics 114 summaries

Puntuación
-
Vendido
2
Páginas
80
Subido en
01-06-2022
Escrito en
2021/2022

Aesthetic digital concise summaries of all the theory and some examples you need to know for mathematics 114. The whole semester's content for mathematics 114 is summarised. Self-study: Revision of coordinate geometry & straight lines These are topics that you should be familiar with from school. Some students forget some of this material by the time they start their first year, and therefore need to revise them. These topics are all required for Calculus topics later on. Week 1: Numbers, inequalities, absolute values, trigonometry and radian measure We spend some time revising numbers, how to solve basic inequalities and trigonometry. We introduce radian measure, the absolute value function and solve some absolute value inequalities. Week 2: Sets and logic Everything in mathematics builds on sets and logic. This week is spent introducing the concept of a set and understanding basic mathematical logic. Week 3 Functions & inverse functions Most students will have seen functions at high school, but for Calculus you will need an improved understanding of functions. We will discuss properties of functions that you may not have come across, relate them to sets and statements, and later revisit them from the point of view of Calculus. We introduce the concept of the inverse of a function and what it means to be injective (one-to-one). Week 4: Limits & continuity The concept of a limit is one of the most important concepts in the course and underlies other important concepts, including continuity, derivatives and definite integrals. The second topic is for this week is that of continuity which gives a formal definition of the intuitive idea that a graph has no breaks in it. Week 5: Derivatives & Induction I We introduce the derivative. It is one of the most important concept sin this course, and most of the course revolves around it. First we define it and develop some properties, then we learn how to differentiate most elementary functions, and then we show how it can be applied. We prove the product rule and the quotient rule. We introduce induction and look at basic examples. Induction is a proof technique for proving a statement holds for all natural numbers. Week 6: Induction II & the Binomial Theorem We continue to look at it induction this week and use it to prove the Binomial Theorem. We also look at how the binomial theorem can be used to solve certain problems. Week 7: Derivatives II: Trigonometric Derivatives and the Chain rule Here we develop the techniques that allow us to differentiate most elementary functions. Week 8: Implicit Differentiation, Rates of Change The first section gives you some idea of how Calculus may be used in practice. We also begin develop the theory that allow us to use Calculus to find minimum and maximum values. This discussion continues into the next week. Week 9: , Max & Min values, the Mean Value Theorem, How derivatives affect the shape of a graph Towards the end of the week we begin studying how derivatives affect the shape of a graph, the start of learning how to sketch and read a graph. Week 10: Infinite limits, Vertical & horizontal asymptotes and Graph sketching The reason for learning how to sketch graphs of functions is to consolidate the understanding of the relation between a function and its derivative and to be able to read a graph. As exercises you will need to sketch the graphs of some functions to see this principle in action. Week 11: Exponential & logarithmic functions & Related Rates We show how to make sense of arbitrary exponential functions and define logarithmic functions as their inverses. We discuss an application of derivatives. Week 12: Anti-derivatives, the definite integrals & the Fundamental Theorem of Calculus If you want to know if you understand something, see if you can do it in reverse. But that’s not the only reason for introducing anti-derivatives. They will also provide a connection to integration. Definite integrals are a way of calculating areas. The Fundamental Theorem provides a connection between differentiation and integration and is the most important result in Calculus, since it allows the efficient calculation of integrals. Week 13: Substitution Rule, Optimisation, Newton's Method This week we study a technique of integration called the substitution rule which is based on the chain rule of differentiation. In addition we study optimisation which as mentioned before is probably the main application of differentiation and is how it is most often applied in practice. Our final topic for this week is Newton’s method which is a method (based on differentiation) for approximating the solution to equations. * Please note that if the display example seems smaller than A4, the downloaded version will not be like this - it will be full-sized.

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Grado

Información del documento

¿Un libro?
No
¿Qué capítulos están resumidos?
All chapters covered in mathematics 114
Subido en
1 de junio de 2022
Número de páginas
80
Escrito en
2021/2022
Tipo
Resumen

Temas

Vista previa del contenido

Numbers


IR : real numbers


IN :
integers ( -2 , 1,0 )

④ rational numbers of
: → ratio
integers






decimal representation is always repeating
0,50
'
e-
g z
=




É =

0,6666 =
0,5

Irrational numbers > cannot be expressed as ratio of integers 11T
,
B
,
1091027


IN : natural numbers : [ 1. 2,3 . . . }




°:"^°ᵗ°^"Mb"[)

W : whole : 0
, 1,2 3,4 , . . -




± "" " "

if acb then btc (

ate <
symbol representing

a
very large number
positive
$




u w Proof by contradiction (§ < 1)
it is between a and b
x exists if
o
{ xlacxcb }
o


Open : Ca , b) =



y g


{


Closed : [a ,b] = xla≤ ✗ ≤ b}
, t
a b




solving inequalities : 4x < 2×+1 ≤ 3×+2 / split
,
1




Absolute values

191 ≥ 0 for number a.
every

191=9 if a ≥ 0


191 = -

a if 9<0




az = 1011 for all values of a
,
as a must be ≥ 0 .

, properties
lab / lallbl 13×-21
e. g.
just
=

*


b≠0 191
§

= 191 =

i




{
/ by
= 1011 = a if a ≥o
a if a < 0
Ian / 1AM NEZ
-


• =

,



1×1 =
9 if I = -1-9


txt < a if -
a < ✗ < a




1×1 > g if ✗ c- a or x > a




e.
g. with
inequalities :




0<1×-51 < É } split

9




{
<
a txt 1×1
0<1×-51 1×-51 < É

X -
5 > 0 or
-



t < x -
S <
{

x -

5 < 0
{ < ✗ <
¥
0 °
i. ✗ < 5 Or × > 5 >

<
I ,

4 'z 5 5
;
i. ✗ E ( 45 5) ,
U / 5. ¥ )

triangle inequality
latbl ≤ 101 -1lb /




and radians
trigonometry
180


radian *
> degree
^




9,0° /
0° 30° 45° 60° 180° 360°
Cosa
Degrees
¥
=




IT IT IT ± 10,1) PE
0 IT 21T
Radians 3- and r=t
6- -4 ( cosy sino )
p⊖ ,
( x , y) : ✗ = ( 050
length of arc


( 1 radian = where a = r
A
a = TO I -1,07
5 OF Poll ,O )
< >
Pit
C
T
Sino =

?
tano =
y
1)
Pgp
co , -




, I
I ≤ 1 I I
[ Oso ≤ and ≤ Sino
-


≤ v
-




COSO =
¥

,Trigonometric identities



( 0sec / ⊖ ) = I

Sino I I
'
4 3
• Sec ⊖ = I
z z
COS ⊖ I
,
I

cot ⊖ = = COS -0
tano Sino
IT
I
¥
sin ⊖ I
• tan -0 = 3

( 050



PYTHAGOREAN IDENTITIES CO -
FUNCTIONS


(0520--1 Simo 1 (¥ ⊖)
=

cos
-
=
Sino
÷ sink
sin (
÷ cosy
Iz ⊖ )
OSOS
-
= [


L



Sec 20 = I + tan 20 [ 0sec 20
=
1+101-20


EVEN AND ODD DOUBLE ANGLES



[OSC -
⊖) = COSQ sin C- F) =
-
Sino
sin 20 =
Zsinocoso

↳ function ↳ odd function

{
even
cosz⊖ = cos 20 -
sin2⊖

^ ix. 4) 2<0520--1
I -
2sin2⊖
)⊖
>
1- ⊖

CX, -

y





Graphs

or • @




6 • • •




v

o 6 @




0 • @




>

, sets and logic
Week 2

* sets and logic NOT in calculus book

SETS

Basic concept of


a set.





count no .
elements in a set with finitely many elements .





understand what it means :




something is an element of a set


E symbol
when one set is a subset of another set

C
symbol
difference between something being an element of a set us .
subset of a set


Definition of intersection ( n) and union ( U)






An interval is a set of real numbers


Use of interval notation
$14.07
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
miaolivier16 C
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
735
Miembro desde
5 año
Número de seguidores
465
Documentos
24
Última venta
1 mes hace
Hoërskool opsommings :)

Ek bied aan volledige, hoë- kwaliteit opsommings vir hoërskool studente. Sien ook my instagram profiel @_ op instagram vir ‘n wyer reeks opsommings of om meer inligting te kry.

4.4

120 reseñas

5
75
4
30
3
10
2
3
1
2

Documentos populares

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes