100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Resumen

Summary for Exam: Experimental Research Methods

Puntuación
-
Vendido
8
Páginas
101
Subido en
25-05-2022
Escrito en
2021/2022

This is a detailed summary of the course (including lectures, reading material) Experimental Research Methods in Psychology Year 2. This summary includes everything that is necessary for the exam as well as SPSS notes.

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
25 de mayo de 2022
Número de páginas
101
Escrito en
2021/2022
Tipo
Resumen

Temas

Vista previa del contenido

1



Summary: Experimental Research Methods


Lecture 1: Introduction (Ch. 4, 5.6-5.9, 6-8, 12)
 Experimental research methods -> techniques that show us how to
analyse experimental data


Descriptive Statistics
 = summarize data
 Data = numerical inform. of a population or sample




 help summarize data -> list of raw data is unclear
 two ways to summarize data: distribution or sample statistics

Distribution
 data summarized by grouping data with the same score
 this can be done in frequency distribution table or histogram
 SPSS syntax to generate frequency distribution and histograms (syntax important
exam)

Sample statistics
 Data summarized using characteristic features of the distribution
 What are characteristic features of a distribution?
1. Most characteristic score of a distribution = central tendency
2. How much do scores deviate from the most characteristic score = dispersion
(variance)
Central tendency

 Measures of central tendency are mean, median and mode
 Mean of the data is the sum of all scores divided by the total number of scores
 By hand:

, 2


Dispersion

 Measures of dispersion are range, variance and the standard deviation
 Variance of data is the sum of all squared deviance scores divided by the number of
scores minus one
 𝑠 = , square root of variance = standard deviation, √𝑠

Inferential statistics
 Descriptive statistics suffices if we have data of the entire population
 Almost always we only have data of a sample & not the population, because:
1. Too expensive
2. Takes too long to collect these data
3. Sometimes impossible
 Using inferential statistics, can draw conclusions about a population based on a
sample
 There are three “procedures” in inferential statistics:
1. Hypothesis testing
2. Point estimation
3. Interval estimation -> confidence interval

Hypothesis testing
 Question: What is the mean of the population from which a sample of 50 cases was
drawn?
 Examine whether mean of population is equal to a certain value or not -> hypotheses
are exclusive (only one H can be true) and exhaustive (all possible options should be
included)
 Ex.: 𝐻 : 𝜇 = 2.5 and 𝐻 : 𝜇 ≠ 2.5
 Two-sided test (𝐻 contains ≠), one-sided test (𝐻 contains > of <)
 Test whether you can reject 𝐻 or not, if you reject 𝐻 , you conclude 𝐻 , i.e. µ is not
equal to 2.5
 Rules of thumb for creating hypotheses:
1. 𝐻 contains “=” -> always the case
2. 𝐻 contains expectations of researcher -> often, but not always the case
 One sided t-test 𝐻 : 𝜇 < 2.5 𝐻 : 𝜇 > 2.5

Steps in hypothesis testing
Step 1: Formulate hypotheses 𝐻 : µ = 2.5 and 𝐻 : 𝜇 ≠ 2.5
Step 2: Determine decision rule to decide when result is statistically sig. -> p < 𝛼
Step 3: Determine p-value based on SPSS output
Step 4: Decision on sig and conclusion

 Apply to our ex.: Syntax

, 3




Logic hypothesis testing
 Make an assumption about value of parameter (here µ) – null H (step 1)
 This value is true, determine the possible values the sample statistic (here 𝑥̅ ) can take
(sampling distribution of 𝑥̅ ) in a simple random sample of N cases
 Mean of sample distribution is µ, variance is 𝜎 ⁄𝑁
 Using that sampling distribution, you determine the probability, so-called p-value
that the value of 𝑥̅ or a more extreme value occurs
 In step 3 you determine position of 𝑥̅ in the sampling distribution, so you also
implicitly determine p-value
 If p-value is lower than 𝛼: If 𝐻 true, then probability that I observe this value for 𝑥̅ or
an even more extreme value is smaller that 𝛼. This probability is so small that I do
not trust my null H anymore. I reject 𝐻 .
 If p-value is larger than 𝛼: If my 𝐻 is true, then the probability that I observe this
value for 𝑥̅ or an even more extreme value is quite large. I do not have enough
reasons to doubt the correctness of 𝐻 . I do not reject 𝐻 .
 In step 2, determine 𝛼 and decision rule, in step 4 you make the decision
Remark
One of the assumption is that sample is a ‘simple random sample’ meaning:

 All cases have an equal chance to be sampled
 Cases are selected independently of another
Test cannot be used if these assumptions are not met




One-sided vs. two-sided testing
 Logic for one-sided and two-sided testing is the same
 SPSS output is always two-sided
 Convert two-sided “sig.” in SPSS output to correct (one-sided) value

, 4




Point estimation
 Is used to answer the following question: What is the best guess of this parameter?
 Which value lies closest to population value
 In case of the mean µ, the guess is 𝑥̅
 In case of variance 𝜎 , best guess is 𝑠

Interval estimation
 With confidence intervals, you answer the following question: What is the interval in
which the value of the parameter lies with 95% confidence?
 95% CI for µ: in 95% of times I draw a sample of N=50, CI will contain µ
 Formula: 𝑥̅ ± 𝑡𝐶𝑉 ⋅ 𝑠⁄√𝑁




Relation CI and testing
 you can use CI to test two-sided hypotheses
 Decision rule: two-sided test with sig. level 𝛼
 if 𝜇 falls in the 𝐶𝐼( )⋅ % you cannot reject 𝐻 in favour of two-sided alternative
 if 𝜇 does not fall in the 𝐶𝐼( )⋅ % you can reject 𝐻 in favour of two-sided
alternative
$11.59
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
ewahundenborn

Conoce al vendedor

Seller avatar
ewahundenborn Tilburg University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
9
Miembro desde
3 año
Número de seguidores
7
Documentos
2
Última venta
3 meses hace

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes