100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary CALCULUS

Puntuación
-
Vendido
-
Páginas
121
Subido en
22-05-2022
Escrito en
2021/2022

IT TEACHES THE BASICS OF CALCULUS

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
22 de mayo de 2022
Número de páginas
121
Escrito en
2021/2022
Tipo
Resumen

Temas

Vista previa del contenido

Calculus

Collection of tutorial exercises for Bachelor of
Engineering Mathematics (EMA105B) students at
Tshwane University Technology compiled
by
Dr M. Aphane with the help of tutors Ms Daphney
Hlotse and Mr Akis Muepu at the Department of
Mathematics and Statistics


2020


Revised : ET Motlotle

,The main purpose of this compilation of tutorial exercise is to collect problems
from different calculus books for students who enrolled for Engineering
Mathematics 1 (EMA105B) at Tshwane University of Technology. The tutorial
guide does not replace the prescribed book. It is still necessary for students to buy
and use the prescribed book.


Calculus is divided into two parts, which are differentiation and integration. Some
applications on differentiation and integration are also included. The guide is
structured in such a way that problems are sorted by topics and some solutions
are provided at the end of each chapter. Some examples and basic introductions
are also provided at the beginning of each chapter.


We trust that you will find the tutorial guide useful and enjoy using it. If you
encounter any errors, incorrect solutions or suggestions on how to improve this
tutorial guide. Feel free to contact us on .




©COPYRIGHT : Tshwane University of Technology
Private Bag X680
PRETORIA
0001


All rights reserved. Apart from any reasonable quotations for the purposes of research
criticism or review as permitted under the Copyright Act, no part of this book may be
reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopy and recording, without permission in writing from the publisher.




ii

,Contents
Chapter 1 ............................................................................................................................................... 1
Differentiation ................................................................................................................................... 1
1.1 The derivative and the tangent problem ............................................................................. 1
1.2 Derivative of a function ........................................................................................................ 1
1.3 Chain Rule Differentiation ................................................................................................... 3
1.4 Implicit Differentiation ......................................................................................................... 5
1.5 Logarithmic and Some Implicit Differentiation ................................................................. 8
1.6 Higher Order Derivatives ................................................................................................... 11
1.7 Optimization ........................................................................................................................ 12
1.8 Parametric Differentiation ................................................................................................. 17
1.9 Differentiation of Hyperbolic Functions ........................................................................... 20
1.10 Inverse Trigonometric Functions ...................................................................................... 21
1.11 Inverse Hyperbolic Functions ............................................................................................ 27
Chapter 2 ............................................................................................................................................. 30
Applications of Differentiation ...................................................................................................... 30
2.1 L’Hopital’s rule:.................................................................................................................. 30
2.2 Curve Sketching and Tangents and Normal .................................................................... 32
2.3 Newtown – Raphson Method ............................................................................................. 36
2.4 Maclaurin Series ................................................................................................................. 38
2.5 The Binomial Expansions ................................................................................................... 40
Chapter 3 ............................................................................................................................................. 42
Partial differentiation ..................................................................................................................... 42
3.1 Partial derivatives .............................................................................................................. 42
3.2 Clairaut’s Theorem ............................................................................................................ 43
3.3 Critical points ...................................................................................................................... 44
3.4 The second partial test ........................................................................................................ 44
3.5 The total differential ........................................................................................................... 45
3.6 Small change ........................................................................................................................ 46
3.7 Rate of change and chain rule ............................................................................................ 47
3.8 Implicit partial differentiation ........................................................................................... 49
3.9 Application of partial derivatives (Partial Differential equations) ................................. 50
Chapter 4 ............................................................................................................................................. 51
Single Variable Integration ............................................................................................................ 51
4.1 Anti-derivative and indefinite integrals ............................................................................ 51


iii

, Indefinite integrals .......................................................................................................................... 51
4.2 Integration by Substitution ................................................................................................ 53
4.3 Integration of Inverse Trigonometry and Inverse Hyperbolic Functions ..................... 56
4.4 Integration by Partial Fraction.......................................................................................... 57
4.5 Integration by Parts ............................................................................................................ 60
4.6 Trigonometric Integrals ..................................................................................................... 63
4.7 Trigonometric Substitution ................................................................................................ 68
Chapter 5 ............................................................................................................................................. 73
Application of Integration .............................................................................................................. 73
5.1 Mean Value Theorem for Integrals ................................................................................... 73
Theorem (Mean Value Theorem for Integrals) ............................................................................ 73
5.2 Root Mean Square value (RMS value) .............................................................................. 74
5.3 Area between the curves ..................................................................................................... 78
5.4 Motion .................................................................................................................................. 79
5.5 Mix problem: Application of integration .......................................................................... 80
Chapter 6 ............................................................................................................................................. 81
Multiple Integrals............................................................................................................................ 81
6.1 Double Integrals .................................................................................................................. 81
6.2 Triple integral...................................................................................................................... 87
6.3 Line integrals ....................................................................................................................... 88
6.4 Line integrals with Respect to Arc length ......................................................................... 89
6.5 Green’s Theorem ................................................................................................................ 90
6.6 Surface integral ................................................................................................................... 90
References .......................................................................................................................................... 117




iv
$8.18
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
samkelojayjay

Conoce al vendedor

Seller avatar
samkelojayjay University of South Africa (Unisa)
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
3 año
Número de seguidores
1
Documentos
2
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes