100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary ADS notes

Puntuación
-
Vendido
-
Páginas
24
Subido en
06-05-2022
Escrito en
2020/2021

Notes based on slides and the book for the exams and to understand the theory. Very useful for the analysis exam

Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

¿Un libro?
No
¿Qué capítulos están resumidos?
3-11, some 12
Subido en
6 de mayo de 2022
Número de páginas
24
Escrito en
2020/2021
Tipo
Resumen

Temas

Vista previa del contenido

Algorithms & Data Structures

1. Complexity Analysis
Efficiency of an algorithm, measured by 2 elements:
 Time complexity - amount of time it takes for a given algorithm to execute
 Space complexity - mount of space a given algorithm uses at most during
execution


Empirical time analysis
Analysis method for time complexity - roughly equivalent to a brute force approach
when programming or a proof by exhaustion for Reasoning and Logic: execute and
measure the time:
long startTime = System.currentTimeMillis(); // record the
starting time
/* (run the algorithm) */
long endTime = System.currentTimeMillis(); // record the ending
time
long elapsed = endTime - startTime; // calculate the
elapsed time


Problems:
 Results may differ when different hardware / compiler / OS / etc. are used
 Experiments are restricted to a limited set of inputs
 Requires a full implementation of the algorithm
 A compiler may optimize your code or require a warm up time.


Theoretical complexity analysis for time
Way to analyse the efficiency of an algorithm without having to run additional code,
don’t need to execute your algorithm to analyse it.
Primitive operations are operations that have a run time of 1:
- Assigning a value to a variable
- Performing an arithmetic operation
- Comparing two numbers (and no more than two)
- Accessing a single element of an array by index
- Calling and returning from a method


Assign a mathematical function to the algorithm that describes the running time.
T algorithm ( n )=number of primitive operations performed for an input size n

,To set up T algorithm ( n ):
1. State the size of the problem n - length of an array.
2. Simplify the program to only using primitive operations (optional).
3. Express the running time by counting operations.
! Note: when expressing the running time, we consider the worst-case of our problem
n.
! Note: a + only represents an arithmetic operation when applied to numbers.


Theoretical complexity analysis for space
Space used can go down, while time cannot. Count the number of stack frames
used.
Salgorithm ( n )=maximum amount of memory needed at any point in the algorithm for an input size n

A stack frame is added or pushed onto the stack when a method is called and is only
removed or popped off the stack when you return from the method. With recursive
method it is possible to have multiple stack frames on the stack at once.


Big O Proof
f ( n ) is O ( g ( n ) ) if f ( n ) ≤ c∗g ( n ) , c ≥ 0 , n0 ≥n



2. Asymptotic growth comparison

The following functions are from ‘best’ asymptotic growth to ’worst’:
1. Constant: f ( n )=c
2. Logarithmic: f ( n )=log ⁡(n)
3. Linear: f ( n )=n
4. Linearithmic (n-log-n): f ( n )=n log ⁡(n)
5. Quadratic: f ( n )=n2
6. Cubic: f ( n )=n3
7. Polynomials: f ( n )=n a
8. Factorial: f ( n )=n !
9. Exponential: f ( n )=e n
10. Worst ever: f ( n )=n n

, 3. Often used tricks

Gauss's sum identity:

n
n(n+1)
∑ i=1+ 2+ 3+…+n= 2
i=1


Geometric sum:

a1 ( 1−r )
m m

∑ ai=1+a+ a2 +…+ an= 1−r
, r ≠1
i=0


where:
o m is the number of terms, in this case n
o a 1 is the first term, in this case 1
o r is the constant that each term is multiplied by to get the next
term, in this case a
Particular geometric series:
n

∑ 2i =2n+1−1
i=0




4. Finding time complexity of a recursive algorithm

1. State / define the size of the input n
2. State the recurrence equation by counting operations. The exact amount of
operations shouldn’t be counted, that depends on the hardware, compiler, etc.
It is more about counting loops, etc. Specific operations can be replaced by a
constant, often called c xwhere x is a number
3. Create a form of this recurrence equation where there is no T(n) in the
equation anymore. There are 2 methods to do so:
a. Making an educated guess and then proving this (by induction)
b. Unfolding the equation and then create a final equation based on that
4. Determine the complexity in Big O notation
5. Prove the complexity in Big O notation




5. Arrays
$9.64
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
randomgirl

Conoce al vendedor

Seller avatar
randomgirl Technische Universiteit Delft
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
3 año
Número de seguidores
0
Documentos
1
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes