100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary exam material 1BVK00

Puntuación
3.0
(1)
Vendido
4
Páginas
36
Subido en
24-04-2022
Escrito en
2021/2022

Summary of all the lectures slides and relevant information from the book for the final exam.

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

¿Un libro?
Subido en
24 de abril de 2022
Número de páginas
36
Escrito en
2021/2022
Tipo
Resumen

Temas

Vista previa del contenido

1BVK00: Business Analytics & Decision Support
Lecture 1: Data analytical thinking (Chapter 1&2)

Types of decisions
• Strategical: unstructured, one-time employee levels, industry trends, rebranding
• Tactical: semi-structured, reporting forecasts, pricing, profitability
• Operational: structured, recurrent scheduling, order processing

Data science: interdisciplinary fields using variety of techniques to create value based on
extracting knowledge
• Extracting useful/valuable knowledge to solve business problems in a systematic way of
well-defined stages
- requires good understanding of application domain
- considers ethics, business models, human behaviour




• CRISP-DM methodology: Cross Industry Standard Process for Data Mining
- Dependency to context
- Finding informative (statistical) attributes
- Generalizing beyond the available data

1. Business Understanding: 4. Modeling:
- Business objectives - Select modeling techniques
- Success criteria (KPI) - Build/train model
- Project plan - Prediction
- Deliverables
2. Data Understanding 5. Evaluation:
- Model validation
- Initial data collection
- Data description - Performance metrics
- Data Exploration - Visualization
3. Data preparation - Review results
6. Deployment:
- Data cleaning
- Model in production
- Sampling
- Normalization
- Feature Selection

,Data mining tasks

• Classification: Determine which discrete category the example is
• Regression: attempts to estimate or predict, for each individual, the numerical value of
some variable for that individual.
• Clustering: attempts to group individuals in a population together by their similarity, but
not driven by any specific purpose.
• Similarity matching: attempts to identify similar individuals based on data known about
them.
• Co-occurrence grouping: attempts to find associations between entities based on
transactions involving them.
• Profiling: attempts to characterize the typical behavior of an individual, group, or
population.
• Link prediction: attempts to predict connections between data items, usually by
suggesting that a link should exist, and possibly also estimating the strength of the link.




Lecture 2: Business Problems & Data Science Solutions (Chapter 2&3&4)

• Unsupervised learning: there is no specific target
• Supervised learning: there exists a specific target

,Target attribute (feature) types:
• Classification: Categorical
• Regression: Numerical (continuous/discrete)
Examples:

“Will this customer purchase service S1 if given incentive I?”
Target: ‘’Will purchase’’, ‘’Will not purchase’’.
→ Classification

“Which service package (S1, S2, or none) will a customer purchase if given incentive I?” Target set: {S1, S2, or
none}
→ (Multi-class) classification

“How much will this customer use the service?”
Target: Service use, e.g., in GB
→ Regression

“What is the probability that the customer will continue?”
Target: Likelihood value of continuation of the customer
→ Regression


• Data mining:
1. Mining the data to find patterns and build models
2. Using the results of data mining




Detailed roadmap for
building ML models:

, Issues affecting data quality:
- Missing values - Attribute dependencies
- Invalid values - Formats
- Misfielded values - Uniqueness
- Misspellings

How to detect these issues?
- Visualization: Visualizing all the values of each feature or taking a random sample to
see if it’s right.
- Outlier analysis: Analyzing if data can be a human error. E.g. a 300 year old person
in the “age” feature.
- Validation code: It’s possible to create a code that checks if the data is right. E.g., in
uniqueness, checking if the length of the data is the same as the length of the vector
of unique values.
Major tasks for preparing good dataset:

• Dealing with missing data
1. Ignore records (use only cases with all values)
- Not effective when the percentage of missing values per attribute varies
considerably as it can lead to insufficient and/or biased sample sizes
2. Ignore attributes with missing values
- Use only features (attributes) with all values (may leave out important features)
3. Use a global constant to fill in the missing value
- e.g., “unknown”. (May create a new class!) Building good datasets
4. Use the attribute mean to fill in the missing value
5. Use the attribute median or mode to fill in the missing value
6. Many other techniques.

• Handling categorical data
- Represented as strings or categories and are in finite numbers
- Ordinal Data: The categories have an inherent order
- Nominal Data: The categories do not have an inherent order




• Building features onto the same scale
- Feature scaling is a crucial step in data preprocessing
- Feature scaling is useful when features values highly vary in magnitudes, units and
range such as age, salary, weight, etc.
- Gradient decent and distance based methods behave much better if features are on
the same scale
- Tree based methods (e.g., Decision tree, Random forest) are invariant to feature
scaling
$6.63
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Reseñas de compradores verificados

Se muestran los comentarios
2 año hace

3.0

1 reseñas

5
0
4
0
3
1
2
0
1
0
Reseñas confiables sobre Stuvia

Todas las reseñas las realizan usuarios reales de Stuvia después de compras verificadas.

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
julidekok Technische Universiteit Eindhoven
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
24
Miembro desde
5 año
Número de seguidores
13
Documentos
10
Última venta
1 mes hace

3.0

1 reseñas

5
0
4
0
3
1
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes