100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary O Level Additional Mathematics Chapter on Differentiation

Puntuación
-
Vendido
-
Páginas
38
Subido en
03-04-2022
Escrito en
2020/2021

This document provides a comprehensive explanation of the chapter on Differentiation for the Cambridge O Level Additional Mathematics Syllabus 4037. It can also be used for similar syllabi such as EDXCEL, International Baccalaureate, ZIMSEC, etc. It also has practice questions.

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Grado

Información del documento

¿Un libro?
No
¿Qué capítulos están resumidos?
Chapter 12: differentiation
Subido en
3 de abril de 2022
Número de páginas
38
Escrito en
2020/2021
Tipo
Resumen

Temas

Vista previa del contenido

CHAPTER 12: DIFFERENTIATION


Chapter objectives:

• understand the idea of a derived function
ð£ ðl £ ð ð£
• use the notations 𝑓 F (𝑥 ), 𝑓′′(𝑥), , H= x yI
ðT ðT l ðT ðT

• use the derivatives of the standard functions 𝑥 (for any rational 𝑛),
sin𝑥, cos 𝑥, tan 𝑥, 𝑒 T , ln 𝑥, together with constant multiples, sums
and composite functions of these
• differentiate products and quotients of functions
• apply differentiation to gradients, tangents and normals, stationary
points, connected rates of change, small increments and
approximations and practical maxima and minima problems
• use the first and second derivative tests to discriminate between
maxima and minima
• apply differentiation to kinematics problems that involve
displacement, velocity and acceleration of a particle moving in a
straight line with variable or constant acceleration, and the use of 𝑥– 𝑡
and 𝑣– 𝑡 graphs




Calculus

Calculus is the study of change in variables. Important techniques in calculus
include differentiation and integration.



What is differentiation?



226

,Differentiation is the process of determining the rate of change of a function
with respect to a variable at an instantaneous point. The derivative of a
function is its gradient function, so the value of the derivative at a point
represents the gradient of the graph at that point.

Given 𝑦 = 𝑓(𝑥) then the first derivative of 𝑦 with respect to 𝑥 equals the
first derivative of 𝑓(𝑥) which is written in the following notation:

𝑑𝑦
= 𝑓 F (𝑥)
𝑑𝑥
ð£
Where is the rate of change in 𝑦 with respect to 𝑥 (pronounced 𝑑𝑦 by 𝑑𝑥)
ðT
and 𝑓 F (𝑥) is the first derivative of 𝑓(𝑥) and is pronounced as such.



Basic rules of differentiation

1. If a function is the sum or difference of other functions, then the
derivative is also the sum or difference of the derivatives of those
functions i.e.:

𝑦 = 𝑓(𝑥 ) + 𝑔(𝑥 ) + ℎ(𝑥 ) + ⋯
𝑑𝑦
→ = 𝑓 F (𝑥) + 𝑔F (𝑥) + ℎF (𝑥) + ⋯
𝑑𝑥

2. A constant that multiplies or divides a function also multiplies or divides
its derivative i.e.:

𝑦 = 𝑎𝑓 (𝑥 )
𝑑𝑦
→ = 𝑎𝑓 F (𝑥)
𝑑𝑥




227

,3. A constant does not change so its rate of change and hence derivative is
zero i.e.:

𝑦=𝑎
𝑑𝑦
→ =0
𝑑𝑥




DERIVATIVES OF STANDARD FUNCTIONS



Derivative of polynomials

The derivative of the polynomial of the form 𝑥 • where 𝑛 is constant real
number is given by

𝒅(𝒙𝒏 )
= 𝒏𝒙𝒏^𝟏
𝒅𝒙



{From this it follows that the derivative of a constant equals 0 because the
ð(6T K )
constant 𝑎 = 𝑎𝑥 k which gives = 𝑎 × 0 × 𝑥 k^/ = 0}
ðT




The derivative of a polynomial in the form (𝑎𝑥 + 𝑏)• is given by:

𝒅(𝒂𝒙 + 𝒃)𝒏
= 𝒂𝒏(𝒂𝒙 + 𝒃)𝒏^𝟏
𝒅𝒙




228

, Example 12.1
ð£
Given 𝑦 = 2𝑥 ] + 𝑥 0 + 3 find .
ðT




SOLUTION

𝑦 = 2𝑥 ] + 𝑥 0 + 3

𝑦 𝑑(𝑥 ]) 𝑑(𝑥 0 ) 𝑑(3)
→ =2 + +
𝑑𝑥 𝑑𝑥 𝑑𝑥 𝑑𝑥
𝑑𝑦
→ = 2 × 3 × 𝑥 ]^/ + 2 × 𝑥 0^/ + 0
𝑑𝑥
𝑑𝑦
∴ = 6𝑥 0 + 2𝑥
𝑑𝑥




Example 12.2
ð£
Find given that 𝑦 = (3𝑥 + 11)0k .
ðT




SOLUTION

𝑦 = (3𝑥 + 11)0k
𝑑𝑦
→ = 3 × 20 × (3𝑥 + 11)0k^/
𝑑𝑥
𝑑𝑦
∴ = 60(3𝑥 + 11)/¯
𝑑𝑥


229
$6.11
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
Akudziwe

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Akudziwe Teachme2
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
2
Miembro desde
5 año
Número de seguidores
1
Documentos
0
Última venta
5 año hace
Notes on STEM subjects by a medical student

I had A*s in all my Cambridge A Level Subjects and was top in Zimbabwe and overall in 2016. I will be selling study notes on all high school Science subjects including Mathematics, Additional Mathematics, Further Mathematics, Biology, Chemistry and Physics for all grades, matric, O Level/IGCSE, AS and A Level. These study notes helped me do really well all of high school and get into Wits Medical School. I will also have summary notes for 1-3rd year medical school.

Lee mas Leer menos
0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes