100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary Linear Algebra for EOR 21/22 (Rijksuniversiteit Groningen, EBP037A05)

Puntuación
5.0
(1)
Vendido
5
Páginas
23
Subido en
25-03-2022
Escrito en
2021/2022

This document is a summary of all lecture slides provided by Stefan Pichler during the 2021/2022 course Linear Algebra. The course is part of the first year of the Econometrics and Operations Research program at the Rijksuniversiteit Groningen.

Mostrar más Leer menos
Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
25 de marzo de 2022
Número de páginas
23
Escrito en
2021/2022
Tipo
Resumen

Temas

Vista previa del contenido

Linear Algebra Summary
Econometrics and Operations Research 2021/2022

,Table of Contents
Week 1..................................................................................................................................................... 3
Eigenvectors and Eigenvalues ............................................................................................................. 3
Diagonalizable Matrices ...................................................................................................................... 3
Difference Equations ........................................................................................................................... 3
Nondiagonalizable Matrices ................................................................................................................ 4
Jordan Normal Forms .......................................................................................................................... 4
Complex Eigenvalues and Eigenvectors .............................................................................................. 5
Week 2..................................................................................................................................................... 6
Markov Processes................................................................................................................................ 6
Symmetric Matrices ............................................................................................................................ 6
Quadratic Forms .................................................................................................................................. 7
Differential Equations.......................................................................................................................... 7
Solutions of First Order ODEs .............................................................................................................. 8
Solutions of Inhomogeneous Linear ODEs .......................................................................................... 8
Week 3..................................................................................................................................................... 9
Second Order Linear ODEs .................................................................................................................. 9
Direction Fields .................................................................................................................................. 10
Phase Portraits .................................................................................................................................. 10
Systems of Differential Equations ..................................................................................................... 11
Linear Systems of ODEs ..................................................................................................................... 12
Week 4................................................................................................................................................... 13
Stability Properties of Equilibrium Solutions..................................................................................... 13
Phase Portraits .................................................................................................................................. 14
Determinants and their Properties ................................................................................................... 15
The Inverse of a Matrix...................................................................................................................... 16
Cramer’s Rule .................................................................................................................................... 17
Week 5................................................................................................................................................... 18
Linear Spaces and Linear Subspaces ................................................................................................. 18
Bases and Dimension of a Linear Space ............................................................................................ 18
Row Spaces ........................................................................................................................................ 19
Column Spaces .................................................................................................................................. 19
Solving Systems of Linear Equations ................................................................................................. 20
Week 6................................................................................................................................................... 21
Null Spaces ........................................................................................................................................ 21
Affine Subspaces ............................................................................................................................... 22
Linear Basis Transformations ............................................................................................................ 22




2

, Week 1
Eigenvectors and Eigenvalues
- Canonical basis vectors in ℝ𝑛 :
1 0 0
0 1 0
- 𝑒1 = ( ) , 𝑒2 = ( ),…, 𝑒1 = ( ).
⋮ ⋮ ⋮
0 0 1
- Identity matrix in 𝑅 𝑛×𝑛 :
1 0 ⋯ 0
0 1 ⋯ 0
- 𝐼𝑛 = ( ).
0 0 ⋱ ⋮
0 0 ⋮ 1
- An eigenvalue of a square matrix 𝐴 is a number 𝜆 ∈ ℂ such that the matrix 𝐴 − 𝜆𝐼𝑛 is
singular.
- The number 𝜆 ∈ ℂ is an eigenvalue of 𝐴 iff det(𝐴 − 𝜆𝐼) = 0. This is the characteristic
equation of matrix 𝐴.
- The trace of a square matrix 𝐴 is the sum of its diagonal entries.
▪ 𝜆1 + 𝜆2 + ⋯ + 𝜆𝑛 = trace(𝐴).
▪ 𝜆1 ∗ 𝜆2 ∗ ⋯ ∗ 𝜆𝑛 = det(𝐴).
- A vector 𝑣 ≠ 0 such that (𝐴 − 𝜆𝐼)𝑣 = 0 for some eigenvalue 𝜆 of 𝐴 is called an eigenvector
of 𝐴 corresponding to 𝜆.
- Note that: (𝐴 − 𝜆𝐼)𝑣 = 0 ⇔ 𝐴𝑣 = 𝜆𝑣.

Diagonalizable Matrices
- Let 𝐴 be a square matrix and let 𝜆1 , … , 𝜆2 , … , 𝜆𝑛 be its eigenvalues and 𝑣1 , 𝑣2 , … , 𝑣𝑛
corresponding eigenvectors, with 𝑃 ≔ [𝑣1 … 𝑣𝑛 ]. Then:
- If P is invertible, then:
𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
▪ 𝑃−1 𝐴𝑃 = ( ).
0 0 ⋱ ⋮
0 0 ⋮ 𝜆𝑛
−1
- If 𝑄 𝐴𝑄 is a diagonal matrix 𝐷, then the columns of 𝑄 are eigenvectors of 𝐴 and the
diagonal entries of 𝐷 are eigenvalues of 𝐴.

Difference Equations
- One can use difference equations to model dynamical problems.
- If 𝐴 is a square matrix, then 𝑧𝑡+1 = 𝐴𝑧𝑡 is a system of linear difference equations (LDE).
- If you know the initial value 𝑧0 then you can iteratively calculate 𝑧1 , 𝑧2 , etc.
- In general: 𝑧𝑡 = 𝐴𝑡 𝑧0 , 𝑡 ≥ 0.
- A solution is of an LDE is a sequence of vectors {𝑧𝑡 }∞
𝑡=𝑡0 that ‘fits’ the LDE.
- The general solution of an LDE is the set containing all solutions of the LDE.
- The sequence {0, 0, 0, … } is a solution of an LDE for every 𝐴 and is called the null solution of
the LDE.




3
$6.57
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
bartkoopmans
5.0
(1)

Reseñas de compradores verificados

Se muestran los comentarios
3 año hace

5.0

1 reseñas

5
1
4
0
3
0
2
0
1
0
Reseñas confiables sobre Stuvia

Todas las reseñas las realizan usuarios reales de Stuvia después de compras verificadas.

Conoce al vendedor

Seller avatar
bartkoopmans Rijksuniversiteit Groningen
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
5
Miembro desde
3 año
Número de seguidores
5
Documentos
3
Última venta
3 año hace

5.0

1 reseñas

5
1
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes