100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Essentials of Econometrics, Gujarati - Solutions, summaries, and outlines. 2022 updated

Puntuación
5.0
(1)
Vendido
1
Páginas
177
Grado
A+
Subido en
06-03-2022
Escrito en
2021/2022

Description: INCLUDES Some or all of the following - Supports different editions ( newer and older) - Answers to problems & Exercises. in addition to cases - Outlines and summary - Faculty Approved answers. - Covers ALL chapters.

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
6 de marzo de 2022
Número de páginas
177
Escrito en
2021/2022
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

APPENDIX
A
REVIEW OF STATISTICS: PROBABILITY AND
PROBABILITY DISTRIBUTIONS

QUESTIONS
A.1. See Sections A.2, A.4, A.5, and A.6.
A.2. No. Notice that a pair of events, A and B, are mutually exclusive if they
cannot occur jointly, that is, P(AB) = 0. Independence, on the other hand,
means that P(AB) = P(A) P(B). Consider this example. Let A = the card is
a heart and B = the card is an ace. A card is drawn from a deck of 52 cards.
We know that P(A) = 1/4 and that P(B) = 1/13. The probability of the event
that a card is both a heart and an ace is P(AB) = 1/52 = P(A) P(B). Hence
the two events are independent. But they are not mutually exclusive
because the ace of hearts could be drawn.
A.3. (a) True, (b) True.
A.4. (a) Yes, they are also collectively exhaustive.
(b) (i) Events E1 and A2 occur together, (ii) events E3 or A3 occur,

(iii) E1 or A1 occur and similarly for the other three combinations;

(iv) events E2 A1 , E3 A2 , E4 A3 occur (Each pair occurs together).
Note that forecasts and actual events need not coincide. It is possible that
E1 was predicted, but the actual growth was A 4 and vice versa.
A.5. PDF relates to a continuous variable and PMF to a discrete variable.
A.6. The CDF of a discrete variable is a step function, whereas that of a
continuous variable is a continuous curve.
P(B| A)P( A)
A.7. Making the substitution, we obtain P( A|B) = . This is simply
P(B)
Bayes’ formula. If we think of A as a possible hypothesis about some
phenomenon, Bayes’ theorem shows how opinions about this hypothesis
held a priori should be modified in light of actual experience. In Bayesian


1

, language, P(A) is known as prior probability and P( A|B) is known as
posterior (or revised) probability.

PROBLEMS
4
A.8. (a) ∑x i −1
= x0 + x + x2 + x3 (Note: x0 = 1).
i =1

6 6
(b) ∑ ay i
= a ∑ y i = a(y 2 + y 3 + y 4 + y 5 + y 6 )
i =2 i =2

2 2 2
(c) ∑(2x i + 3y i ) = 2∑ x i + 3∑ y i = 2(x 1 + x 2 ) + 3(y1 + y 2 )
i =1 i =1 i =1

3 2
(d) ∑∑ x i
y i = x 1 y1 + x 2 y1 + x 3 y1 + x 1 y 2 + x 2 y 2 + x 3 y 2
i =1 j =1

4 4 4
(e) ∑ i + 4 = ∑ i +∑ 4 = (1 + 2 + 3 + 4) + (4)(4) = 26
i =1 i =1 i =1

3
(f) ∑3 i
= 3 + 32 + 33 = 39
i =1

10
(g) ∑ 2 = (2)(10) = 20
i =1

3 3 3
(h) ∑ (4x 2 − 3) = 4 ∑ x 2 − ∑ 3 = 4(12 + 2 2 + 32 ) − (3)(3) = 47
x =1 x =1 x =1



5
A.9. (a) ∑x i
( i from 1 to 5)
i =1

5
(b) ∑i x i
(i from 1 to 5)
i =1

k
(c) ∑(x 2
i
+ y i2 ) (i from 1 to k)
i =1




A.10. (a) [500 (500 + 1)] / 2 = 125,250
100 9
(b) ∑ k − ∑ k = [100 (101)] / 2 – [9 (10)] / 2 = 5,005
1 1




2

, 100
(c) 3∑ k = 3(5,005) = 15,015, using (b) above.
10

A.11. (a) [10 (11)(21)] / 6 = 385
20 9
20(21)(41) 9(10)(19)
(b) ∑ k2 − ∑ k2 = 6

6
= 2,585
1 1

19 10
19(20)(39) 10(11)(21)
(c) ∑k − ∑k 2 2
=
6

6
= 2,085
1 1

10
(d) 4 ∑ k 2 = 4(385) = 1,540, using (a) above.
1




A.12. (a) Since ∑ f(X ) = 1, (b + 2b + 3b + 4b + 5b) = 15b = 1. Therefore, we
have b = 1/15.
(b) P(X ≤ 2) = 6/15; P(X ≤ 3) = 10/15; P(2≤ X ≤ 3) = 4/15


A.13. (a) Marginal distributions:


X 1 2 3 Y 1 2 3 4
f(X) 0.20 0.40 0.40 f(Y) 0.15 0.10 0.45 0.30


(b) Conditional distributions:


f(X|Y) f(Y|X)
P(X = 1 | Y = 1) = 0..15 = 0.20 P(Y = 1 | X = 1) = 0..20 = 0.15
P(X = 2 | Y = 1) = 0..15 = 0.40 P(Y = 2 | X = 1) = 0..20 = 0.10
P(X = 3 | Y = 1) = 0..15 = 0.40 P(Y = 3 | X = 1) = 0..20 = 0.45
………. P(Y = 4 | X = 1) = 0..20 = 0.30
………. ……….


The remaining conditional distributions can be derived similarly.


A.14. Let B represent the event that a person reads the Wall Street Journal and let




3

, A1, A2, and A3 denote, respectively, the events a Democrat, a Republican,
and an Independent. We want to find out P(A2 |B) :

P(B| A2 )P(A2 )
P(A2 |B) =
P(B| A2 )P(A2 ) + P(B| A1 )P(A1 ) + P(B| A3 )P(A3 )

(0.6)(0.4)
= = 0.558
(0.6)(0.4) + (0.3)(0.5) + (0.4)(0.1)
Note that the prior probability of sampling a Republican is 0.4 or 40%. But
knowing that someone is found reading the Wall Street Journal, the
probability of sampling a Republican increases to 0.558 or 55.8%. This
makes sense, for it has been observed that proportionately more
Republicans than Democrats or Independents read the Journal. This
example is an illustration of Bayes’ Theorem.

A.15. This is P ( A + B ) or P(A ∪ B) = 0.9.


A.16. (a) No, for the probability that this happens is 0.2 and not zero.
(b) Let A denote having children and B denote work outside home. If these
two events are to be independent, we must have P(AB) = P(A) P(B). In the
present case, P(AB) = 0.2 and P(A) = 0.5 and P(B) = 0.6. Since in this case
P(AB) ≠ P(A) P(B), the two events are not independent.

A.17. From Table A-9, it can be seen that


X Below poverty Above poverty f(Y) 
Y
White 0.0546 0.6153 0.6699
Black 0.0315 0.0969 0.1284
Hispanic 0.0337 0.1228 0.1565
Asian 0.0046 0.0406 0.0452
f(X)  0.1244 0.8756 1.00




4
$40.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Reseñas de compradores verificados

Se muestran los comentarios
2 año hace

5.0

1 reseñas

5
1
4
0
3
0
2
0
1
0
Reseñas confiables sobre Stuvia

Todas las reseñas las realizan usuarios reales de Stuvia después de compras verificadas.

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
TestBanks2022 Harvard University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
2127
Miembro desde
3 año
Número de seguidores
1700
Documentos
2246
Última venta
2 semanas hace

4.0

343 reseñas

5
183
4
59
3
45
2
18
1
38

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes