100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

Brunel - Computer Science - CS3002 Artificial Intelligence Lecture Notes (Exam Revision)

Puntuación
5.0
(1)
Vendido
7
Páginas
64
Subido en
28-02-2022
Escrito en
2020/2021

These are the lecture notes I created which I used to revise for the CS3002 Artificial Intelligence exam at Brunel University in which I received a First Class in.

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
28 de febrero de 2022
Número de páginas
64
Escrito en
2020/2021
Tipo
Notas de lectura
Profesor(es)
Alan tucker
Contiene
Todas las clases

Temas

Vista previa del contenido

Module: CS3002
Lecture Topic: Unsupervised Learning
Week: 2



Machine learning is the ability to simulate human learning and appears in different forms.

Learning

• Unsupervised learning is a way from learning from historical situations or data without any
knowledge of what is it supposed to be doing with that data. There is no signal to tell it that
it is doing good or bad. Unsupervised is without the desired output.
• A task of a supervised learning algorithm is learning with the desired output.
• Reinforcement learning – reward / punishment signals.

Methods:

Supervised:

• Classification, the input is some data, and the output is a decision
• Regression, the output is not a decision but a number so it may be a prediction.

Unsupervised:

• Learning without the desired output (teacher signals)
• Clustering is one of the most widely used unsupervised learning methods.

Clustering

There is no desired output but finding structure in data or the inputs. For example, a human will see
cats and recognise what a cat is…

• Clustering is to partition a data set into subsets, clusters, so that the data in each subset share
some common trait. Often similarity or proximity for some defined distance measure.

The process of organisation objects into groups whose members are similar in some way. A cluster is
a group of objects that is somehow similar to themselves and dissimilar to the objects to other
clusters.



Clustering algorithms have several uses. For example:

• Social networks: People who talk to each other more, separate cluster. E.g. Marketing ads to
this cluster, more likely to share between friends.
• Customer Segmentation: Different clusters of consumers, know how to advertise to them.
• Gene networks: Understanding gene interactions, identifying important genes linked to
disease.

,Pattern Similarity

A key concept in clustering is similarity. Clusters are formed by similar patterns. We need to define
some metric to measure similarity. Using distance, the shorter the distance the more similar the two
patterns.

Euclidean distance is the most common one.




You go through each pair of data points; you want to see how close they sit in the data space. You go
through all variables and subtract the difference between each measurement. For Euclidean you
sum them up and square root the value.

,K-Means Clustering

The K parameter determines how many clusters are going to be in the final clustering arrangement.




Limitations: At each iteration of K-Means a pattern can be assigned to only one cluster. E.g:




Advantages:

• Computationally faster than hierarchical clustering (if K is small)
• May produce tighter cluster than hierarchical clustering, especially if the clusters are global

Disadvantages:

• Fixed number of clusters makes it difficult to predict what K should be
• Different initial partitions (the initial allocation of centroids) can result in different final
clusters
• Potential empty cluster (not always bad)
• Does not work well with non-globular clusters (so if you have elongated or massively
different size clusters its difficult)

, Hierarchical Clustering

A form of agglomerative clustering.

It generates a load of different clustering result. Each object / data point in its own cluster and then
it runs through the algorithm and is all in one cluster at the end.

The intermediate clusters is what is important while it creates a series of merges. Creating a
dendrogram. Allows you to see the underlying structure of the data set, so for example there is 3 or
4 clusters in this data set. Unlike K means there is a
visualisation of what the number of clusters should be.

You have more control over the structure that you want
to cut the dendrogram into. You can control how many
clusters you have and how big they need to be.




Single: Smallest distance between any two pairs from the two clusters being compared

Average: The average distance between pairs

Complete: The largest distance between any two pairs from the two clusters being compared
$9.35
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Reseñas de compradores verificados

Se muestran los comentarios
1 año hace

5.0

1 reseñas

5
1
4
0
3
0
2
0
1
0
Reseñas confiables sobre Stuvia

Todas las reseñas las realizan usuarios reales de Stuvia después de compras verificadas.

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
cslbrunel Brunel University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
63
Miembro desde
3 año
Número de seguidores
34
Documentos
29
Última venta
4 meses hace
Brunel Computer Science (1st Class Honours)

I achieved a First Class Honours degree in Computer Science from Brunel University - I will be uploading some of my work. Please do not purchase any documents looking for the solution to your assignments or deliverables. No refunds / exchanges.

5.0

2 reseñas

5
2
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes