100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary Intro to Research in Marketing Spring 2021

Puntuación
-
Vendido
1
Páginas
82
Subido en
26-02-2022
Escrito en
2020/2021

Summary of all lectures and cases combined

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
26 de febrero de 2022
Número de páginas
82
Escrito en
2020/2021
Tipo
Resumen

Temas

Vista previa del contenido

Intro to Research in Marketing
Defining Multivariate Analysis: ‘Broadly speaking, it refers to all statistical
methods that simultaneously analyze multiple measurements on each
individual or object under investigation’
(Multivariate = more than 2 variables)

Measurement Scale
Nominal Unique definition/ Brand name/ gender
classification
Ordinal Order/ ranking Level of education
Interval Arbitrary origin IQ, time of day
Ratio A clear starting point Height, Age, Cost

Errors:
- Reliability: Is the measure ,consistent’, correctly geregistered, ..?
- Validity: Does the measure capture the concept it is supposed to
measure?
Reality
Hypothesis Testing

H0: no
Ha: difference
difference

H0: no
β (type II error)
Statistical




1-α
decision




difference

Ha: difference α (type I error) 1-β (power)


- Type I error () = probability of test showing statistical significance when
it is not present (‘false positive’)
- Power (1-) = probability of test showing statistical significance when it is
present

,Dependence techniques: one outcome variable
 ANOVA → marketing mix effectiveness
- How does visit frequency (once or twice a year) and use of
samples (yes/no) affect physicians’ prescriptions?
 Logistic regression → targeting & marketing mix effectiveness
- Does improved waiting time at the checkout increase the
likelihood of visiting a store?
- What is the probability that a person will respond to a direct
mailing based on opening speed (in hours) after receiving the
mail?
 Conjoint analysis → product development research
- To what extent does each attribute (factor) contribute to the
total utility of a product?
- What are the optimal features for a new type of sneakers?

Dependent variable Independent variables Method
(outcome) (explanatory)
Metric Non-Metric (Nominal) ANOVA
Non-Metric (0 or 1; Metric (Or dummies) Logistic Regression
probability)
Metric (Utility score) Non-Metric (Attributes) Conjoint Analysis

Interdependence techniques: no specific outcome variable, whole set of
interdependent relationships is examined
 Factor analysis → group variables (mostly as auxiliary method)
- Which two product characteristics, out of multiple product
attributes, should we communicate?
 Cluster analysis → group objects: segmentation
- Which client groups can company X distinguish based on
product usage?
- What products can be recommended to online users based on
previous clicks and purchases?
 Multidimensional scaling → positioning/perceptual map
- How is product X perceived compared to other products?
- -Which are the closest competitors of a new brand of product Y?

What are outliers?
Outliers = “Observations with a unique combination of characteristics
identifiable as distinctly different from the other observations” (unusual
observations)
 There are two basic types of outliers:
- ‘good’: true value (probably), this can give a lot of information
- ‘bad’: wrong recorded data has negative influence on results
 To distinguish these types, one should investigate the causes
- Procedural error
- Exceptional circumstances (cause known or unknown)

, - ‘Regular’ levels, yet unique in combination with other variables
(bivariate en multivariate outliers)
Why worry? Bad outliers completely mess up the results!

How can we detect outliers?
• Univariate (Histograms, Frequency Tables, Mean +/- 3SD, Box Plots)
• Bivariate (Scatterplot, Multiple Histograms)
• Multivariate (Mahalanobis D2) (NOT IN THIS COURSE)
Keep or delete? → “Judgement Call”
• Only observations that truly deviate can be considered outliers.
• Removing many ‘outliers’ can jeopardize representativeness

Examining Missing Data
Missing Value Analysis option in SPSS. Missing data = some data is not present
for different persons or periods. Smaller sample size  decrease in power.
Why bother? Missing data lead to
• Reduced sample size
• Possibly biased outcomes if missing data process not random
 4-step approach for identification and remedying

Steps in Missing Data Analysis:
1. Determine type of missing data:
Ignorable   Non-ignorable Missings?
2. Determine Extent (%) of missing data:
By variable, case, overall
3. Diagnose randomness of missing data:
Systematic, Missing At Random (MAR), Missing Completely At Random
(MCAR)?
4. Deal with the missing data problem:
Remove Cases or variables with missing values, Use Imputation (replace
it by the means of other respondents).

Missing data is ignorable when they are built in (people with no kids can’t
answer the question about the age of their children). Less than 10% missing
data  move on.

Step 3: Diagnose the randomness of missing data. Are Non-ignorable missings:
• ‘Systematic’
Linked to level of variable itself, other pattern?
• Missing At Random (MAR)
Whether Y is missing depends on level of X. Yet, within level of X: missing
at random
• Missing Completely At Random (MCAR)
Whether Y is missing is truly ‘random’ (independent of Y or of any other
variable X). There is no link between changes consumers give. No limit
whether an answer is given or not and what it would be. Positive
because it doesn’t influence results.

, ANOVA
Step 1 | Defining the objectives
Step 2 | Designing the AN(C)OVA
Step 3 | Checking assumptions
Step 4 | Estimating the model
Step 5 | Interpreting the results
Step 6 | Validating the outcomes
Step 7 | Using the results

Step 1: Defining the objectives
Test whether treatments (categorical variables) lead to different levels for a
(set of) metric outcome variables, e.g.
• Does online ad design, in particular: position of picture and logo, affect
the click-through rate?
• How does visit frequency (once or twice a year) and use of samples
(yes\no) affect physicians’ prescriptions?
• How does promo activity affect store sales and traffic?

Treatments = variables that will affect the results (Independent Variables)
The explanatory variables (Independent Variables) are always nominal (or
ordinal) scaled.
The outcome variable is always one variable (1 Dependent Variable)
The measurement scale for the outcome variable (Dependent Variable)
need to be metric (interval or ratio)




Why use ANOVA and not multiple T-tests?
• 1 test, =.05:
Probability of decision=‘effect’ while there is none: .05
Probability of decision=‘no effect’ while there is none: .95
• 3 tests, =.05 in each test:
Probability of decision=‘no effect’ in each test, while there is none:
(.95)3=.857
Probability of decision=‘effect’ in at least one of the three tests, while
there is none: (1-.857)=.143>.05!!!
• Result = Probability of erroneously finding effect increases with number
of tests
$8.38
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
ambermutsaers Fontys Hogeschool
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
12
Miembro desde
8 año
Número de seguidores
12
Documentos
5
Última venta
3 año hace

2.0

2 reseñas

5
0
4
0
3
1
2
0
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes