100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Resumen

Final Modules Summary Data Mining for Business and Governance (880022-M-6)

Puntuación
3.0
(1)
Vendido
1
Páginas
16
Subido en
04-02-2022
Escrito en
2021/2022

This documents contains a summary of the final modules/weeks (4-7) for the course Data Mining for Business and Governance. The following topics are included in this summary: ⋅ Crisp (K-means) clustering ⋅ Fuzzy (c-means) clustering ⋅ Hierarchical clustering ⋅ Text mining ⋅ Preprocessing noisy text ⋅ Document similarity: Jaccard coefficient ⋅ Term frequency, inverse term frequency ⋅ Dimensionality reduction ⋅ Feature selection ⋅ Filtering strategy ⋅ Wrapper strategy ⋅ Embedded strategy and Lasso regression as an example ⋅ Feature extraction ⋅ Principal Component Analysis (PCA) ⋅ Feature extraction in deep learning ⋅ Association rule learning ⋅ Support/confidence of an itemset ⋅ Apriori algorithm ⋅ Itemset taxonomy ⋅ Mining big datasets ⋅ Ensemble learning – Boosting, Bagging, Random Forests ⋅ Deep learning and neural networks ⋅ Over sampling/under sampling ⋅ Support vector machines ⋅ Naïve bayes ⋅ Information gain

Mostrar más Leer menos
Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
4 de febrero de 2022
Número de páginas
16
Escrito en
2021/2022
Tipo
Resumen

Temas

Vista previa del contenido

Crisp (K-Means) clustering
Produces independent clusters that might fail to capture
overlapping clusters. Crisp clustering minimizes the sum of
distances between data instances and their respective
cluster centroids. These centroids are randomly initialized
and updated in each iteration. If they don’t update, or
don’t change, the algorithm can stop as it’s not learning a
new pattern. Before the iteration we:
1. Tune K, this defines the number of clusters we want to
obtain.
2. Select a number of random data instances to obtain
random centroids.
3. Assign all data instances to the closest cluster centroid.
4. Recompute the centroids of our newly formed clusters.
This can be done by either aggregating all datapoints in a cluster or selecting the most
representative data instance for each cluster.
5. Repeat 3. And 4. until a stopping criteria is reached.

Stopping criteria:
 Centroids of a newly formed cluster don’t change
 Data instances remain in the same cluster; no new patterns occur
 Maximum number of iterations is reached

Fuzzy (c-means) clustering
Produces clusters where each data instance belongs to a group with a membership degree.
Data instances can belong to more than one cluster. Each instance will be evaluated and
returns a membership degree between 0 and 1. This value
indicates how much this instance belongs to a certain cluster.

We can tune c as the number of clusters we want to obtain. Next
to calculating clusters, fuzzy computes prototypes; weighted
aggregations of instances. These prototypes can be used to
summarize the data.

The objective of fuzzy clustering is to minimize the sum of distances between each data
instance and all clusters.

The stopping criteria are the same as k-means; either the prototypes don’t change or we
reach a maximum number of iterations.

,Hierarchical clustering
Provides a hierarchy of clusters. Doesn’t have tunable parameters.




Useful when we don’t know how many clusters we should obtain to properly represent the
problem under investigation.

Text mining
Representing, mathematically interpreting, inferring knowledge from text. This is very
complex.

Preprocessing noisy text
Just lowercasing and removing punctuation is very naïve.
 Tokenization: looks for whitespaces and special tokens. I’m -> I am.
 Lemmatization: grouping of variances of a word so they can be analyzed as a single item.
Watches, watching -> watch.
Tokenization and lemmatization give more interesting vocabularies without noise.
 Named-entity recognition: find patterns that indicate some token is a person’s name.
 Language normalization: find the meaning of an actual world. Gurl -> Girl.

Document similarity: Jaccard coefficient
Compares members for two sets which members are shared and which members are
distinct:
words∈ A∧B
J ( A , B)=
words∈ A∨B
With 0 indicating no overlap and 1 indicating complete overlap.

For example:
Data Language Learning Mining Text Vision Y
1 0 1 0 0 1 Computer vision
1 1 1 0 1 0 NLP
1 0 1 1 1 0 Text mining

2 words ∈d 0∧d 1 2
J ( d 0 , d 1)= = =0.4
5 words ∈d 0∨d 1 5
So not much similarity between computer vision and NLP.

, 3 words ∈d 1∧d 2 3
J ( d 1 , d 2)= = =0.6
5 words∈d 1∨d 2 5
There is more similarity between NLP and text mining.

Term frequency, inverse term frequency
Term frequency means how often a term occurs in a document. There is a problem with
calculating term frequencies; the longer a document, the higher the probability a term will
occur and thus get more weight.

The inverse term frequencies account for the fact that rarer terms should actually be more
informative:
N
Inverse document frequenc y ( IDF)=log
dft
Where N is the total number of documents and dft the number of documents containing a
certain term.

Term frequency – inverse document frequency, or tf*idf, is a statistic intended to reflect
how important a term is to a document in a collection of documents. Its weighting helps to
adjust for the fact that some words appear more frequently in general. However, we still
don’t account for the fact that longer documents will be weighted more.
For example:
Document 1 Document 2
Term Term Count Term Term count
This 1 This 1
Is 1 Is 1
A 2 Another 2
Sample 1 Example 3

Term = “example”
Tf(example,d1) = 0/5 = 0.
Tf(example,d2) = 3/7 = 0.429.
Idf(example,D) = log(2/1) = 0.301.
Tf*idf(example,d1,D) = 0*0.301 = 0
Tf*idf(example,d2,D) = 0.429*0.301 = 0.129

Feature selection
Feature selection is the process of selecting a subset of relevant features. This subset has
the same predictive power as the original dataset.
Feature selection:
 Reduces complexity of a model
 Reduces demand on hardware sources
 Reduces the “curse of dimensionality”
$5.48
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Reseñas de compradores verificados

Se muestran los comentarios
3 año hace

3.0

1 reseñas

5
0
4
0
3
1
2
0
1
0
Reseñas confiables sobre Stuvia

Todas las reseñas las realizan usuarios reales de Stuvia después de compras verificadas.

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Socnerd Universiteit Utrecht
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
71
Miembro desde
8 año
Número de seguidores
58
Documentos
17
Última venta
3 año hace

3.4

23 reseñas

5
2
4
10
3
8
2
1
1
2

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes