100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

TEST BANK FOR Elementary Mechanics and Thermodynamics By Prof. John W. Norbury (Solutions Manual)

Puntuación
-
Vendido
-
Páginas
111
Subido en
30-01-2022
Escrito en
2021/2022

Exam (elaborations) TEST BANK FOR Elementary Mechanics and Thermodynamics By Prof. John W. Norbury (Solutions Manual) Exam (elaborations) TEST BANK FOR Elementary Mechanics and Thermodynamics By Prof. John W. Norbury (Solutions Manual) SOLUTIONS MANUAL for elementary mechanics & thermodynamics Professor John W. Norbury Physics Department University of Wisconsin-Milwaukee P.O. Box 413 Milwaukee, WI 53201 November 20, 2000 Contents 1 MOTION ALONG A STRAIGHT LINE 5 2 VECTORS 15 3 MOTION IN 2 & 3 DIMENSIONS 19 4 FORCE & MOTION - I 35 5 FORCE & MOTION - II 37 6 KINETIC ENERGY & WORK 51 7 POTENTIAL ENERGY & CONSERVATION OF ENERGY 53 8 SYSTEMS OF PARTICLES 57 9 COLLISIONS 61 10 ROTATION 65 11 ROLLING, TORQUE & ANGULAR MOMENTUM 75 12 OSCILLATIONS 77 13 WAVES - I 85 14 WAVES - II 87 15 TEMPERATURE, HEAT & 1ST LAW OF THERMODYNAMICS 93 16 KINETIC THEORY OF GASES 99 3 Chapter 1 MOTION ALONG A STRAIGHT LINE 5 6 CHAPTER 1. MOTION ALONG A STRAIGHT LINE 1. The following functions give the position as a function of time: i) x = A ii) x = Bt iii) x = Ct2 iv) x = Dcos !t v) x = E sin !t where A;B;C;D;E; ! are constants. A) What are the units for A;B;C;D;E; !? B) Write down the velocity and acceleration equations as a function of time. Indicate for what functions the acceleration is constant. C) Sketch graphs of x; v; a as a function of time. SOLUTION A) X is always in m. Thus we must have A in m; B in msec¡1, C in msec¡2. !t is always an angle, µ is radius and cos µ and sin µ have no units. Thus ! must be sec¡1 or radians sec¡1. D and E must be m. B) v = dx dt and a = dv dt. Thus i) v = 0 ii) v = B iii) v = Ct iv) v = ¡!D sin !t v) v = !E cos !t and notice that the units we worked out in part A) are all consistent with v having units of m¢ sec¡1. Similarly i) a = 0 ii) a = 0 iii) a = C iv) a = ¡!2Dcos !t v) a = ¡!2E sin !t 7 i) ii) iii) x t v a x x v v a a t t t t t t t t C) 8 CHAPTER 1. MOTION ALONG A STRAIGHT LINE iv) v) 0 1 2 3 4 5 6 t -1 -0.5 0 0.5 1 x 0 1 2 3 4 5 6 t -1 -0.5 0 0.5 1 x 0 1 2 3 4 5 6 t -1 -0.5 0 0.5 1 v 0 1 2 3 4 5 6 t -1 -0.5 0 0.5 1 v 0 1 2 3 4 5 6 t -1 -0.5 0 0.5 1 a 0 1 2 3 4 5 6 t -1 -0.5 0 0.5 1 a 9 2. The ¯gures below show position-time graphs. Sketch the corresponding velocity-time and acceleration-time graphs. t x t x t x SOLUTION The velocity-time and acceleration-time graphs are: t v t t v t a t a t a v 10 CHAPTER 1. MOTION ALONG A STRAIGHT LINE 3. If you drop an object from a height H above the ground, work out a formula for the speed with which the object hits the ground. SOLUTION v2 = v2 0 + 2a(y ¡ y0) In the vertical direction we have: v0 = 0, a = ¡g, y0 = H, y = 0. Thus v2 = 0¡ 2g(0 ¡ H) = 2gH ) v = p 2gH 11 4. A car is travelling at constant speed v1 and passes a second car moving at speed v2. The instant it passes, the driver of the second car decides to try to catch up to the ¯rst car, by stepping on the gas pedal and moving at acceleration a. Derive a formula for how long it takes to catch up. (The ¯rst car travels at constant speed v1 and does not accelerate.) SOLUTION Suppose the second car catches up in a time interval t. During that interval, the ¯rst car (which is not accelerating) has travelled a distance d = v1t. The second car also travels this distance d in time t, but the second car is accelerating at a and so it's distance is given by x ¡ x0 = d = v0t + 1 2at2 = v1t = v2t + 1 2at2 because v0 = v2 v1 = v2 + 1 2at ) t = 2(v1 ¡ v2) a 12 CHAPTER 1. MOTION ALONG A STRAIGHT LINE 5. If you start your car from rest and accelerate to 30mph in 10 seconds, what is your acceleration in mph per sec and in miles per hour2 ? SOLUTION 1hour = 60 £ 60sec 1sec = 1 60 £ 60hour v = v0 + at a = v ¡ v0 t = 30 mph ¡ 0 10 sec = 3mph per sec = 3mph 1 sec = 3 mph 1 ( 1 60 £ 1 60hour) = 3£ 60 £ 60 miles hour ¡2 = 10; 800 miles per hour2 13 6. If you throw a ball up vertically at speed V , with what speed does it return to the ground ? Prove your answer using the constant acceleration equations, and neglect air resistance. SOLUTION We would guess that the ball returns to the ground at the same speed V , and we can actually prove this. The equation of motion is v2 = v2 0 + 2a(x ¡ x0) and x0 = 0; x= 0; v0 = V ) v2 = V 2 or v = V 14 CHAPTER 1. MOTION ALONG A STRAIGHT LINE Chapter 2 VECTORS 15 16 CHAPTER 2. VECTORS 1. Calculate the angle between the vectors ~r =^i + 2^j and ~t =^j ¡ ^k. SOLUTION ~r:~t ´ j~rjj~tj cos µ = (^i + 2^j ):(^j ¡ ^k) = ^i:^j + 2^j:^j ¡^i:^k ¡ 2^j:^k = 0 + 2 ¡ 0 ¡ 0 = 2 j~rjj~tj cos µ = p 12 + 22 q 12 + (¡1)2 cos µ = p 5 p 2 cos µ = p 10 cos µ ) cos µ = p2 10 = 0:632 ) µ = 50:80 17 2. Evaluate (~r + 2~t ): ~ f where ~r =^i + 2^j and ~t =^j ¡ ^k and ~ f =^i ¡^j . SOLUTION ~r + 2~t = ^i + 2^j + 2(^j ¡ ^k) = ^i + 2^j + 2^j ¡ 2^k = ^i + 4^j ¡ 2^k (~r + 2~t ): ~ f = (^i + 4^j ¡ 2^k):(^i ¡^j) = ^i:^i + 4^j:^i ¡ 2^k:^i ¡^i:^j ¡ 4^j:^j + 2^k:^j = 1 + 0 ¡ 0 ¡ 0 ¡ 4 + 0 = ¡3 18 CHAPTER 2. VECTORS 3. Two vectors are de¯ned as ~u =^j + ^k and ~v =^i +^j. Evaluate: A) ~u +~v B) ~u ¡~v C) ~u:~v D) ~u £~v SOLUTION A) ~u +~v = ^j + ^k +^i +^j =^i + 2^j + ^k B) ~u ¡~v = ^j + ^k ¡^i ¡^j = ¡^i + ^k C) ~u:~v = (^j + ^k):(^i +^j ) = ^j:^i + ^k:^i+ ^j:^j + ^k:^j = 0 + 0 + 1 + 0 = 1 D) ~u £~v = (^j + ^k) £ (^i +^j ) = ^j £^i + ^k £^i +^j £^j + ^k £^j = ¡^k +^j + 0 ¡^i = ¡^i +^j ¡ ^k Chapter 3 MOTION IN 2 & 3 DIMENSIONS 19 20

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
30 de enero de 2022
Número de páginas
111
Escrito en
2021/2022
Tipo
Examen
Contiene
Desconocido

Temas

Vista previa del contenido

2

, SOLUTIONS MANUAL
for elementary mechanics &
thermodynamics


Professor John W. Norbury
Physics Department
University of Wisconsin-Milwaukee
P.O. Box 413
Milwaukee, WI 53201

November 20, 2000

,Contents

1 MOTION ALONG A STRAIGHT LINE 5

2 VECTORS 15

3 MOTION IN 2 & 3 DIMENSIONS 19

4 FORCE & MOTION - I 35

5 FORCE & MOTION - II 37

6 KINETIC ENERGY & WORK 51

7 POTENTIAL ENERGY & CONSERVATION OF ENERGY 53

8 SYSTEMS OF PARTICLES 57

9 COLLISIONS 61

10 ROTATION 65

11 ROLLING, TORQUE & ANGULAR MOMENTUM 75

12 OSCILLATIONS 77

13 WAVES - I 85

14 WAVES - II 87

15 TEMPERATURE, HEAT & 1ST LAW OF THERMODY-
NAMICS 93

16 KINETIC THEORY OF GASES 99

3

, Chapter 1

MOTION ALONG A
STRAIGHT LINE




5
$17.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
Exceldemics
1.0
(1)

Conoce al vendedor

Seller avatar
Exceldemics Harvard University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
4
Miembro desde
3 año
Número de seguidores
4
Documentos
36
Última venta
1 año hace
Exceldemics

On this page, you find all documents, bundles, and flashcards offered by Exceldemics.

1.0

1 reseñas

5
0
4
0
3
0
2
0
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes