100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

TEST BANK FOR Essential Mathematical Methods For The Physical Sciences By K. F. Riley, M. P. Hobson

Puntuación
-
Vendido
-
Páginas
244
Subido en
30-01-2022
Escrito en
2021/2022

Exam (elaborations) TEST BANK FOR Essential Mathematical Methods For The Physical Sciences By K. F. Riley, M. P. Hobson

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
30 de enero de 2022
Número de páginas
244
Escrito en
2021/2022
Tipo
Examen
Contiene
Desconocido

Temas

Vista previa del contenido

This page intentionally left blank

,Essential Mathematical Methods
for the Physical Sciences
Student Solution Manual


K. F. RILEY
University of Cambridge

M. P. HOBSON
University of Cambridge

, Contents




Preface page vii

1 Matrices and vector spaces 1

2 Vector calculus 27

3 Line, surface and volume integrals 41

4 Fourier series 56

5 Integral transforms 72

6 Higher-order ordinary differential equations 85

7 Series solutions of ordinary differential equations 105

8 Eigenfunction methods for differential equations 116

9 Special functions 128

10 Partial differential equations 138

11 Solution methods for PDEs 149

12 Calculus of variations 166

13 Integral equations 182

14 Complex variables 192

15 Applications of complex variables 200

16 Probability 214

17 Statistics 231



v

, 1 Matrices and vector spaces




1.1 Which of the following statements about linear vector spaces are true? Where a statement is false,
give a counter-example to demonstrate this.
(a) Non-singular N × N matrices form a vector space of dimension N 2 .
(b) Singular N × N matrices form a vector space of dimension N 2 .
(c) Complex numbers form a vector space of dimension 2.
(d) Polynomial functions of x form an infinite-dimensional
 vector space.
(e) Series {a0 , a1 , a2 , . . . , aN } for which N
n=0 |an | = 1 form an N-dimensional vector space.
2

(f) Absolutely convergent series form an infinite-dimensional vector space.
(g) Convergent series with terms of alternating sign form an infinite-dimensional vector space.



We first remind ourselves that for a set of entities to form a vector space, they must
pass five tests: (i) closure under commutative and associative addition; (ii) closure under
multiplication by a scalar; (iii) the existence of a null vector in the set; (iv) multiplication
by unity leaves any vector unchanged; (v) each vector has a corresponding negative vector.
(a) False. The matrix 0N , the N × N null matrix, required by (iii) is not non-singular

and is therefore not in the set.   
1 0 0 0
(b) Consider the sum of and . The sum is the unit matrix which is not
0 0 0 1
singular and so the set is not closed; this violates requirement (i). The statement is false.
(c) The space is closed under addition and multiplication by a scalar; multiplication
by unity leaves a complex number unchanged; there is a null vector (= 0 + i0) and a
negative complex number for each vector. All the necessary conditions are satisfied and
the statement is true.
(d) As in the previous case, all the conditions are satisfied and the statement  is true.2
(e) This statement is false. To see why, consider bn = an + an for which N n=0 |bn | =
4 = 1, i.e. the set is not closed (violating (i)), or note that there is no zero vector with unit
norm (violating (iii)).
(f) True. Note that an absolutely convergent series remains absolutely convergent when
the signs of all of its terms are reversed.
(g) False. Consider the two series defined by

 n  n
a0 = 12 , an = 2 − 12 for n ≥ 1; bn = − − 12 for n ≥ 0.

The series that is the sum of {an } and {bn } does not have alternating signs and so closure
(required by (i)) does not hold.
1
$17.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
Exceldemics
1.0
(1)

Conoce al vendedor

Seller avatar
Exceldemics Harvard University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
4
Miembro desde
3 año
Número de seguidores
4
Documentos
36
Última venta
1 año hace
Exceldemics

On this page, you find all documents, bundles, and flashcards offered by Exceldemics.

1.0

1 reseñas

5
0
4
0
3
0
2
0
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes