100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

ECB3AMT - Applied Microeconometric Techniques - Full summary

Puntuación
4.9
(15)
Vendido
53
Páginas
45
Subido en
24-01-2022
Escrito en
2021/2022

A detailed summary of all the relevant methods. Based on the book, lecture slides, tutorials, and articles and videos I found through Google. Note: this is a summary of the *theory*. I did not include all examples discussed in the tutorial.

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

¿Un libro?
No
¿Qué capítulos están resumidos?
Only relevant parts for this course
Subido en
24 de enero de 2022
Archivo actualizado en
26 de enero de 2022
Número de páginas
45
Escrito en
2021/2022
Tipo
Resumen

Temas

Vista previa del contenido

Applied Microeconometric Techniques
Utrecht University – ECB3AMT

Written by Lisanne Louwerse


Summary

,Table of content
WEEK 1 – CAUSALITY ........................................................................................................................................ 3
INTRODUCTION ....................................................................................................................................................... 3
CORRELATION VS. CAUSALITY ..................................................................................................................................... 3
THE RUBIN CAUSAL MODEL ....................................................................................................................................... 6
WEEK 2 – REGRESSION AND BIAS ..................................................................................................................... 8
ENDOGENEITY IN THE REGRESSION MODEL .................................................................................................................... 8
WEEK 3 – RANDOMIZED CONTROLLED TRIAL (RCT) ........................................................................................ 10
RCTS .................................................................................................................................................................. 10
TREATMENT EFFECTS .............................................................................................................................................. 10
INTERNAL AND EXTERNAL VALIDITY ............................................................................................................................ 12
LIMITATIONS AND ALTERNATIVES .............................................................................................................................. 13
WEEK 4 + 5 – INSTRUMENTAL VARIABLES (IV) ................................................................................................ 15
THE IV METHOD.................................................................................................................................................... 15
INTERNAL VALIDITY ................................................................................................................................................ 16
EXTERNAL VALIDITY ................................................................................................................................................ 17
2-STAGE LEAST SQUARES (2SLS) ............................................................................................................................. 18
WEEK 6 – REGRESSION DISCONTINUITY DESIGN (RDD) .................................................................................. 20
MAIN IDEA OF RDD ............................................................................................................................................... 20
INTERNAL VALIDITY ................................................................................................................................................ 21
EXTERNAL VALIDITY ................................................................................................................................................ 22
FUZZY RDD.......................................................................................................................................................... 23
WEEK 7 + 8 – DIFFERENCE-IN-DIFFERENCES (DID) ........................................................................................... 24
MAIN IDEA OF DID ................................................................................................................................................ 24
COMMON TREND ASSUMPTION ................................................................................................................................ 25
DD REGRESSION.................................................................................................................................................... 26
POOLED OLS ........................................................................................................................................................ 27
FIXED EFFECTS ESTIMATOR ...................................................................................................................................... 28
WEIGHTING ......................................................................................................................................................... 29
INTERNAL VALIDITY ................................................................................................................................................ 30
EXTERNAL VALIDITY ................................................................................................................................................ 32
KEY TAKEAWAYS ............................................................................................................................................ 34
WEEK 1 - CAUSALITY ............................................................................................................................................. 34
WEEK 2 – REGRESSION AND BIAS ............................................................................................................................. 35
WEEK 3 - RCT ...................................................................................................................................................... 36
WEEK 4 + 5 - IV ................................................................................................................................................... 38
WEEK 6 - RDD ..................................................................................................................................................... 40
WEEK 7 + 8 - DID ................................................................................................................................................. 41
USEFUL LINKS ................................................................................................................................................. 45




2

,Week 1 – Causality
Key Words
▪ Randomized experiments, natural experiments and quasi-experiments.
▪ Correlation vs. causality
▪ Reverse causality, simultaneity, omitted variable bias and selection bias
▪ Policy evaluation
▪ Fundamental problem of causal inference (counterfactual situation)
▪ Rubin causal model
▪ SUTVA

Introduction

The gold standard to research a cause-effect-relationship is to use randomized experiments
like lab or field experiments. But this is often infeasible in economics and business.
This course: how can we use natural experiments in order to study relationships?
Natural experiments: real-life situations that economists study and analyse to determine cause
and effect relationships.
Difference between natural experiment and quasi-experiment:
▪ In a natural experiment the assignment occurs ‘naturally’, without the researcher's
intervention.
▪ In a quasi-experiment the criterion for assignment is selected by the researcher.


Correlation vs. causality

▪ Correlation does not imply causality. Just because two things correlate, it does not mean
that one of them is causing the other.
▪ Lack of correlation does not imply lack of causality. Just because two things do not
correlate, it does not mean that there is no relationship between them.


Why does correlation not imply causation?
▪ Reverse causality: X and Y are associated, but not in the way you would expect. Instead
of X causing a change in Y, it is really the other way around: Y is causing changes in X.
causality

reverse causality


▪ Simultaneity: the explanatory variable is jointly determined with the dependent variable.
In other words, X causes Y but Y also causes X.




3

, ▪ Omitted variable bias: occurs when a variable O affects both X and Y but is not
(adequately) taken into account.




▪ Selection bias: occurs when the subjects who select or who are selected into treatment
differ from the subjects who don‘t.


Why should we care about causality?
Causal effect is very important in policy evaluation.
Policy evaluation: a systematic assessment of the change in an outcome variable (y) that can
be ascribed to a specific policy measure/intervention (x).
Why does this matter?
▪ Actual effect of measures/interventions → evidence-based policy
→ We want to know whether the policies (measures/interventions) we implement
are actually effective.
▪ Allocation of (financial) resources.
→ As a firm you have limited resources so you want to know which measures give
you the most benefits.
▪ Accountability of decision makers
→ Show what the actual effect of a measure is, instead of having to rely on the
opinions of decision makers (like politicians).


How do you evaluate a policy?
Key element of policy evaluation: construction of an adequate counterfactual situation.
Counterfactual situation: What would have happened in the absence of the intervention?
What would have happened to the treated unit had it not been treated?


Key aim of policy evaluation: identifying the causal effect of an intervention.
The counterfactual situation is unobservable. You can identify the causal effect by comparing
the actual situation to the hypothetical counterfactual situation.


Steps of policy evaluation:

Step 1. Defining the unit of observation.
→ At which level do you measure the outcome variable?
→ E.g. individuals, regions, firms, households, schools, etc.


4
$9.67
Accede al documento completo:
Comprado por 53 estudiantes

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Reseñas de compradores verificados

Se muestran 7 de 15 comentarios
1 año hace

1 año hace

2 año hace

2 año hace

2 año hace

2 año hace

3 año hace

4.9

15 reseñas

5
14
4
1
3
0
2
0
1
0
Reseñas confiables sobre Stuvia

Todas las reseñas las realizan usuarios reales de Stuvia después de compras verificadas.

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
lisannelouwerse Universiteit Utrecht
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
340
Miembro desde
8 año
Número de seguidores
248
Documentos
0
Última venta
6 días hace
Summaries UU Economics and Business Economics

Feedback is always welcome. Send me a message if you have any comments on how I can improve my summaries. :)

4.6

71 reseñas

5
51
4
16
3
3
2
0
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes