100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

Class notes for Statistics for CSAI 2

Puntuación
-
Vendido
3
Páginas
29
Subido en
23-01-2022
Escrito en
2021/2022

Class notes/ summary for Statistics for CSAI 2

Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
23 de enero de 2022
Número de páginas
29
Escrito en
2021/2022
Tipo
Notas de lectura
Profesor(es)
Dr. travis j. wiltshire
Contiene
Todas las clases

Temas

Vista previa del contenido

31.08.2021- Lecture 1

Why do we need probability theory?
- We use inferential statistics to answer questions about how representative our data
are of the population
- The core of the science
- Probabilities form the basis for statistical inference.

Probability Distributions
- Elementary events – For a given observation, there outcome will be one and only one
of these events
- Sample space – the set of total possible events
- P(X) = 0-1
- Sum of all probabilities is 1

Binomial distribution
- Based on success probability
- E.g., number of successful tails in a coin flip, number
during a dice roll
- N = number of observations or size parameter
- X is a generated randomly from the distribution

Normal Distribution
- Bell Curve of Gaussian distribution
- Continuous distribution vs discrete case for binomial


t distribution
- Similar to normal
- Heavy tails
- Used in t-tests, regression, and more
- Used when you expect data are normally
distributed, but don’t know mean or SD




X^2 distribution
- Often used in categorical data analysis
- Shows up everywhere
- ‘sum of squares’ follow this distribution

,F Distribution
- When you need to compare two chi square distributions
- comparing two sums of squares




Week 2- Sampling Theory

- We’re trying to run inferential statistics and the important thing we’re thinking about
is “what is a population we might be interested in?”
- it’s really important as you conduct your research project you begin to think
about what kind of data you’re going to collect and who is the target
population you’re trying to understand

- Population is the entire collection of units that we define
- Sample is a smaller collection of units from a population
- we hope it’s representative our population
- we try to define our population by things we discovered about our sample


- Typically the goal of empirical work: we’re trying to use a sample and our knowledge
about that sample to draw an inference about the target population

Sampling Methods:
- Simple random sampling
- In reality it’s really difficult to get a real random sample
- In most case we have pseudo random
- eg. when we run a random generator in R, this processes are arguably
random

check canvas for the R exercise for the biased sample

- Oftentimes in practice the samples we use for our research are not simple random
samples. We often aim to have random sampling where every member of the
population has the equal chance to be selected but it can be quite time consuming and
difficult to access.

- Stratified Sampling
- this is where we divide our population into different types of categories and
we try to make sure our sample accurately reflects these categories
- Volunteer sampling
- eg. Sona Studies
- Opportunity Sampling

, - going to people who wait in a cafe/airport etc and asking them to fill in a
survey or participate in a study
- often biased and very unrepresentative samples
- Convenience Sampling
- Researchers at the uni are typically tended to use convenience samples-- they
have access to students and they can make requirements to participate in
studies
- aren’t always representative

- Snowball Sampling
- advantage of this one is you can get access to harder to reach populations
based on certain features
- eg. to study pregnancy you need pregnant people and usually they are
available in groups

Does your sampling method matter?
- it depends on
- What's your target population and Is your sample biased?
- often it’s essential to measure and report diversity in your sample
- you should be transparent about your sample and how it’s recruited

Sampling methods examples
- Stratified sampling for the perceptions of different aged populations of a virtual agent
helping with health issues
- Snowball sampling for how children with autism spectrum disorder learn social skills
from a robot
- Convenience sample of uni students for what cognitive capacities are associated with
better problem solving performance-- you might wanna consider different age groups
or study levels
- Opportunity sampling for people’s levels of stress after arriving to work after taking
public transit --this could be biased bc peoples stress level might vary depending on
whether they are willing to participate in your study

Sample statistics vs. Population parameters
- Sample
- something we calculate in our sample- descriptive statistics like Mean and SD
describe only the sample from which they were calculated
- Population has a true mean and SD are but it’s very rare that we know it in Cogsci
- Sample to Population
- We use the mean and SD that are obtained from the sample to estimate the
mean and SD of the population. It’s very common in cog sci
$9.45
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
melisanver Tilburg University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
59
Miembro desde
4 año
Número de seguidores
46
Documentos
9
Última venta
3 semanas hace

4.3

3 reseñas

5
2
4
0
3
1
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes