100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

Lectures - Marketing Analytics for Big Data

Puntuación
-
Vendido
-
Páginas
39
Subido en
20-01-2022
Escrito en
2021/2022

Duidelijke uitwerking van alle hoorcolleges van het vak Marketing Analytics for Big Data. Inclusief uitgelegde voorbeelden.

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
20 de enero de 2022
Número de páginas
39
Escrito en
2021/2022
Tipo
Notas de lectura
Profesor(es)
Dr. g. knox
Contiene
Todas las clases

Temas

Vista previa del contenido

Marketing Analytics for Big Data


Lecture 1 – Intro, Characteristics of Big Data

Clip 1.1: What are big data?
Observing behavior
Digital traces (or exhaust): a record created and stored on some behavior (for example: click
on a website, a call or location on a phone, buy with credit card, watch, like or share)

Data and two notions of big (meaning)




Data can be big in different ways




Big data
Early definition: too large to be loaded into one machine, “distributed-data big”, domain of
computer engineering
More our focus:
“Big data is a shorthand label that typically means applying the tools of artificial intelligence,
like machine learning, to vast new troves of data beyond that captured in standard
databases the new data sources include Web-browsing data trails, social network
communications, sensor data and surveillance data.”

Primary vs secondary data
- Primary data (custom-made): data collected to answer a specific research question
- Secondary data (readymade): data collected for non-research purpose

,While most big data applications are secondary or “readymade”, not all are.




Clip 1.2: uses of big data
Big data for personalization
“Recommendation algorithms are at the core of the Netflix product. They provide our
members with personalized suggestions to reduce the amount of time and frustration to find
something great content to watch.”




Big data for boosting engagement
“At any given point time, there isn’t just one version of Facebook running, there are
probably 10,000.” – Mark Zuckerberg

Big data for reducing churn
- Customer churn: customer quits some service
- Use past data to estimate model that predicts churn
- Length of time being customer (tenure), number of other services subscribed to,
demographics
- Use that model to predict probability of churn on current customers
- Intervene on those most likely to churn

,Big data for public policy & economy
- “Now the mobile phone has become a primary source of public data intelligence”
- Are people going back to work?
- Are people going back to restaurant?

Clip 1.3: 10 characteristics of big data
Using big data to learn about things
Advantage Disadvantage
1. Big 4. Incomplete
2. Always on 5. Inaccessible
3. nonreactive 6. Non-representative
7. Drifting
8. Algorithmically confounded
9. Dirty
10. Sensitive

Advantages:
1. Big
When is big an advantage? When the event is rare or small:
- The average click through rate on banner ad is 0.35%
- For every 10,000 observations, you have 9,965 no-clicks and 35 clicks

- Suppose you’re running a A/B test:
Average CTR for A = 0.35%, B = 0.40%
0.05% increase could mean a lot of in extra revenue
But what is the confidence interval around 0.05%? How precisely is it estimated?

Also an advantage when there is “heterogeneity” in responses
 customers respond differently to the same thing
No heterogeneity (homogeneity) = everyone has the same response

2. Always-on
Collecting data in real-time is important when we need to know and respond to the
answer quickly (for example: economic activity, public health, monitoring
competition, trend spotting)

3. Nonreactive
People usually change their behavior when they know they are being observed.
But with big data users are typically not aware they are being recorded.

, Disadvantages:
4. Incomplete
“Big data record what happened, but not why”
Example:
Predicting churn = predicting customer quit
- Attracting new customers costs 5-6x more than retaining existing
- Solution: use big data to predict churn, intervene on those likely to churn before
they churn
- Big data record usage, charges, channel of acquisition
- These may predict churn: customers who use the service a lot are less likely to
churn
- But this isn’t a cause

5. Inaccessible
- From outside the organization:
Legal, business or ethical barriers to giving outside researchers access to data
- From inside:
Databases are not integrated, lacking variables to match, different coding schemes
Want to know all touchpoints customer has interacted with

6. Non-representative
If your sample is representative, you can make inferences about the population
based on your sample




- Consumers say that reviews are important but...
- We know that they are not always valid




Review Survey
$7.78
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
irisberkvens Tilburg University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
13
Miembro desde
4 año
Número de seguidores
13
Documentos
18
Última venta
1 año hace

3.3

3 reseñas

5
0
4
1
3
2
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes