100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary Introduction to Probability and Statistics

Puntuación
-
Vendido
-
Páginas
4
Subido en
03-01-2022
Escrito en
2021/2022

I have summarized some of the corresponding books along with my interpretation of the lecture notes from the course. This is suitable for anyone who is new to the idea of probability and statistics. It assumed knowledge of derivatives and integrals.

Mostrar más Leer menos
Institución
Grado








Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

¿Un libro?
No
¿Qué capítulos están resumidos?
1-9
Subido en
3 de enero de 2022
Número de páginas
4
Escrito en
2021/2022
Tipo
Resumen

Temas

Vista previa del contenido

1 Introduction
Population - The de
ned set of object we desire information from. We can have a population mean µ, median µ̃,
variance σ2 , and standard deviation σ.
Sample - The subset of the population we analyze. We can have a sample
n
mean (arithmetic average of
P
x i
x̄ = n
i=1

n 2
data), median x̃ (the middle value of an ordered data set), variance s2 = with standard deviation s. The
P
i=1 (xi −x̄)
√ n−1
standard error of the mean is s/ n.
Variables are either quantitative, continuous or discrete, or qualitative, categorical (ordinal or nominal) or unstruc-
tured.
A multimodal histogram has multiple peaks. A dichotomous population consists of only two categories; the
sample proportion in category one is x/n, and 1 − x/n in category two.
Counting
Order with replacement: nk . Order without replacement: (n−k)!
n!
. Order with non-distinct objects of K sets: n!
n1 !...nK ! .
No order with replacement: n+k−1
. No order without replacement: nk .
 
k



2 Probability
An event is a subset of outcomes contained in the sample space which is the set of all possible outcomes.
Union A ∪ B
Intersection A ∩ B
Disjoint Events - when A ∩ B = ∅
Probability of A from the sample: P (A) = cardinality
cardinality S .
A

DeMorgan's Laws (A ∪ B)′ = A′ ∩ B ′ and (A ∩ B)′ P = A′ ∪ B ′ .
Axioms P (A) ≥ 0, P (S) = 1, and P (A1 ∪ A2 ∪ ...) = ∞ i=1 P (Ai ) for a collection of disjoint events.
For any event A, P (A) + P (A′ ) = 1 and P (A) ≤ 1.
Union of Three Events - P (A ∪ B ∪ C) = P (A) + P (B) + P (C) − P (A, B) + P (A, C) + P (B, C) + P (A, B, C).
Conditional Probability - P (A|B) = (A,B)P (B)
Independence - A and B are independent events if: P (A, B) = P (A)P (B), P (A|B) = P (A), or P (B|A) = P (B),
mutual independence extends for k events..
Intersection via Conditioning (Multiplication Rule) - P (A, B) = P (B|A)P (A)
Pk
LoTP - For any set of disjoint and exhaustive events A1 , ..., Ak , P (B) = P (B|A1 )P (A1 ) + · · · + P (B|Ak )P (Ak ) =
i=1 P (B|Ai )P (Ai )
Bayes' Theorem - Let A1 , ..., Ak be any set of disjoint and exhaustive events with prior probabilities P (Ai ). The
posterior probability of Aj given B is P (Aj |B) = P (Aj ,B)
P (B) = Pk
P (B|Aj )P (Aj )
i=1 P (B|Ai )P (Ai )
Random Variables (RV's) and Distributions
RV - A function whose domain is S and whose range is R.
Realization - For some outcome ω and rv X , X(ω) = x is the realization.
PMF - Gives theP probability that a discrete rv takes on x, de
ned as P (X = x) = fX (x). A PMF satis
es
fX (x) ≥ 0 ∀ x and fX (x) = 1.
x
PDF - A function f( x) for a continuous rv such that P (a ≤ X ≤ b) = a f (x)dx. A PDF satis
es f (x) ≥ 0 ∀ x and
Rb

f (x)dx = 1. If the CDF is dierentiable, then the PDF is the derivative of the CDF.
R∞
−∞
Expected Values (of a function of a rv) - (X = x) for discrete X and E[g(X)] =
P
E[g(X)] = x g(x)P
g(x)f (x)dx for continuous X .
R∞
−∞
Linearity of EV's - E[aX + bY + c] = aE[X] + bE[Y ] + c
Variance - V ar[X] = E[X − E[X]]p2 = E[X 2 ] − (E[X])2
Standard Deviation - SD[X] = V ar[X] P
Discrete CDF - FX (x) = P (X ≤ x) = y:y≤x fX (y), the observed value of X will be at most x. Note that
P (a ≤ X ≤ b) = F (b) − F (a−), where F (a−) includes P (X = a) for discrete X .
Continuous CDF - F (x) = P (X ≤ x) = −∞ f (y)dy (integrate the PDF). Note that P (X > a) = 1 − F (a) and
Rx

P (a ≤ X ≤ b) = F (b) − F (a).
Properties of CDFs - limx→−∞ P (X ≤ x) = 0, limx→∞ P (X ≤ x) = 1, P (X ≤ x) is non-decreasing, and P (X ≤ x)
is right continuous.




1
Gratis
Accede al documento completo:
Descarga

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
TheQuantitativeNoteMan

Conoce al vendedor

Seller avatar
TheQuantitativeNoteMan Simon Fraser University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
1
Miembro desde
3 año
Número de seguidores
1
Documentos
8
Última venta
3 año hace
Comprehensive Note Corner

I sell comprehensive and approachable study notes for quantitative subjects to students looking for a deep understanding and appreciation for the subject at hand. I believe that solving many, many problems is the number one method to mastering a subject. This can be achieved by having an accurate, concise, and organized set of notes to refer to. My notes provide a great alternative to flipping through a textbook while trying to work practice problems. That being said, none of my notes contain examples as those should be done by the student. My notes are great to review at least once a day. Note: My Chemistry notes, Pre-calculus notes, and calculus 1 notes are done in Microsoft Word, with the rest done in LaTeX (As of January 2nd 2022). Any further documents posted in 2022 or later years will be done strictly in LaTeX or pen and pencil. Thank you!

Lee mas Leer menos
0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes