100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

Extensive summary of all knowledge clips week 1 - 6 Strategy Analytics course - Tilburg University

Puntuación
5.0
(1)
Vendido
4
Páginas
19
Subido en
25-11-2021
Escrito en
2021/2022

Summary of all knowledge clips used for lectures from week 1 - 6. Include figures, charts and examples in order to fully understand concepts discussed

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
25 de noviembre de 2021
Número de páginas
19
Escrito en
2021/2022
Tipo
Notas de lectura
Profesor(es)
A. gosh & m. testoni
Contiene
Todas las clases

Temas

Vista previa del contenido

Strategy Analytics
Knowledge clips

Week 1

Data Science Fundamentals

Data observations present in daily life;
1) Marketing
- Online advertising
- Recommendations for cross-selling
- Customer relationship management
2) Finance
- Credit scoring and trading
- Fraud detection
- Workforce management
3) Retail
- Marketing
- Supply chain management

Data-driven decision making (DDD) = refers to the practice of basing
decisions on the analysis of data, rather than purely on intuition. Very
useful tool that can be used to drive managerial decisions -> need to
triangulate different forms of data and managerial experience to make
decisions

Data science = involves principles, processes and techniques for
understanding phenomena via the (automated) analysis of data. To
address specific question, it is the engineering behind the logics

The sort of decisions of interest is the need for discovery (non-obvious), this is something
counterintuitive and the repetitive decisions, you must be able to use it in other situations

Data = facts and figures (not the information itself), when this is structured it will provide information
(this is the context of the data)

Big data = very large dataset, with 3 distance
characteristics -> the 3Vs

1. Volume = quantity of generated stored data
2. Variety = type of nature of data
3. Velocity = speed at which the data is generated
and processed

Data mining = the extraction of knowledge from data,
via technologies that incorporate these principles. You
use it for new data

Types of data analysis;
- Descriptive analytics (BI) = what has happened? -> simple descriptive statistics, dashboard,
charts, diagrams. Does not provide why it happened, or why it needs to change
- Predictive analytics = what could happen? -> segmentation, regressions. It provides information
on what the influence is
- Prescriptive analytics = what should we do? -> complex models for product planning and stock
optimization

, Data Science Capability as strategic asset

Data science is viewed as a capability, which is a strategic asset. Data and the capability to extract
useful knowledge from data can be a strategic asset. It provides competitive advantage

Big data refers to the big volume of information that companies can gather and have access to.
Information flows come from customer, suppliers and distributors. All this information has to be
structured. When you combine big data with effective analytics you have a key CA for organisations

Delta model =

1) D = data, this data must be clean, accessible and unique
2) E = enterprise wide focus, must be available for the entire organisation
3) L = leaders, leaders at all levels that promote data driven culture
4) T = targets, key business areas
5) A = analysists, that can accomplish the strategy

Business problem to data mining tasks

A collaborative problem-solving between business stakeholders and data scientists -> decomposing a
business problem into solvable subtasks. Match the subtasks with known tasks for which tools are
available. Solving the remaining non-matched subtasks (by creativity). Putting the subtasks together
to solve the overall problem

 If you want to find out who is your most profitable customer, you should break it into several
tasks = who are my customers, how can I segment them in profiles, are there differences in
characteristics that result in different revenue flows

Methods that can be used;
- Classification
- Regression
- Similarity matching
- Link prediction
- Clustering
- Profiling
- Co-occurrence grouping
- Data reduction
- Causal modeling

Supervised vs. Unsupervised

The methods can be either supervised or unsupervised learning methods. Supervised methods are
those where you are looking for something, unsupervised do not have a target variable. Target
variable can be seen as a dependent variable

Unsupervised learning, do not have specific outcomes. The machine tries to find specific patterns in
the data, it provides examples. Algorithm that is used in this type of learning;
- Clusters
- Anomaly detection
- Association discovery
- Topic modeling

Because this type of model does not have a ‘outcome’ these unsupervised learning methods cannot
be evaluated.
$9.59
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Reseñas de compradores verificados

Se muestran los comentarios
2 año hace

5.0

1 reseñas

5
1
4
0
3
0
2
0
1
0
Reseñas confiables sobre Stuvia

Todas las reseñas las realizan usuarios reales de Stuvia después de compras verificadas.

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
JaelaBoot Tilburg University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
268
Miembro desde
6 año
Número de seguidores
151
Documentos
23
Última venta
2 semanas hace

4.3

19 reseñas

5
11
4
4
3
3
2
1
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes