100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Entrevista

Trigonometric Equations Gr11

Puntuación
-
Vendido
-
Páginas
11
Subido en
25-11-2021
Escrito en
2021/2022

Grade 11 Trig Equations explained in depth

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado
Schooljaar
200

Información del documento

Subido en
25 de noviembre de 2021
Número de páginas
11
Escrito en
2021/2022
Tipo
Entrevista
Empresa
Desconocido
Personaje
Desconocido

Temas

Vista previa del contenido

Grade 11 Trigonometry
Document 4: Trigonometric Equations
Solving equations (finding angles) when you know one of its ratios [e.g. tan 𝑥 = 0,45]
In Grade 10, you learnt to solve equations for angles less than 90 degrees (in other words, in the first quadrant).
In Grade 11, you learn to solve for angles greater than 90 degrees, or negative angles.
If sin 𝑥 , cos 𝑥 or tan 𝑥 has a particular value, and the angle 𝑥 lies between 0 and 360 degrees, the angle can
have TWO possible values, but your calculator will only give you one answer . So you have to determine both
answers, by using your calculator answer in a particular way.
Solving trig equations requires that we find the value(s) of the angles that satisfy the equation. If a specific
interval for the equation is given, then we will find the general solution, followed by the actual angles which
lie within the given interval.
The periodic nature of trig functions (the fact that they repeat their shape, and therefore their points, after a
certain number of degrees) means that there are many values that satisfy a given equation, as shown in the
diagram below:




1 1
Given above are graphs of 𝑦 = 𝑠𝑖𝑛𝑥 and 𝑦 = . When solving the equation sin 𝑥 = , all the 𝑥-values at which
2 2
the sin-curve and the horizontal line intersect, are solutions.
Here the given interval is −360° < 𝑥 < 360°.
1
There are 4 solutions. Using your calculator [shift sin 2 ] only gives 𝑥 = 30°. So we need a method to determine
the other 3 solutions in this example. We do this by first finding the “general solution”.
Developing the concept:
The period of the function 𝑦 = sin 𝑥 is 360°, which means the curve repeats every 𝟑𝟔𝟎°.
1 1
sin 30° = 2, but so does sin 390° = sin (30° + 360°) = sin 30° = 2.
1
sin 750° = sin (30° + 2 × 360°) =
2
1
sin 1 110° = sin(30° + 3 × 360°) =
2
1
Therefore, you can summarise the solutions as the GENERAL SOLUTION of the equation sin 𝑥 = 2:

Quad 1: 𝑥 = 30° + 𝑛. 360°, 𝑛 ∈ ℤ, or
Quad 2: 𝑥 = 180° − 30° + 𝑛. 360°, 𝑛 ∈ ℤ NOTE: 𝑛 ∈ ℤ means 𝑛 is any INTEGER.

some
books use
180° − 𝜃 𝜃 𝑘 instead
of 𝑛
180° + 𝜃 360° − 𝜃




Quadrant 4 could also use simply −𝜃. 1

, Worked Example 1: Find the GENERAL SOLUTION to the equation 𝟑 𝐬𝐢𝐧 𝟐𝒙 = −𝟎, 𝟕𝟓𝟕


Follow these steps always for solving trig equations with one ratio. Lets call this type ‘Pattern A’
Step 1: Solve for the given ratio/isolate the ratio:
3 sin 2𝑥 = −0,757
0,757
sin 𝟐𝒙 = − 3
NOTE: It is important to isolate the ratio (sin 2𝑥) even if the angle is compound
(the angle here is 2𝑥).

Step 2: Determine in which two quadrants the solution lies. Use the CAST diagram. This will be where the given
ratio is negative, in the given example; Write these down, leaving a few lines open in between:
Q3……………….
S A
……………….
Q4………………
……………….
Step 3 Fill in the following according to the quads:
Q3 2𝑥 = 𝟏𝟖𝟎° + ⋯ … ….(the reference angle) + 𝑛. 360°, 𝑛 ∈ ℤ
T C
The angle ………………………………………………………
Q4 2𝑥 = 𝟑𝟔𝟎° − ⋯ … ….(the reference angle) + 𝑛. 360°
……………………………………………………..



Step 4 Find the reference angle (the calculator angle) by pressing shift sin of the POSITIVE ratio (value)
0,757
and fill it in, correct to 2 decimal places [sin−1 ( ) = 14,62°].
3

The reference angle is the positive ACUTE angle between the 𝑥-axis and the rotating arm. (Be careful: if
you type the negative ratio into the calculator, then a negative angle is given and this is not the
reference angle. It would be the negative of the reference angle.
1
Eg. sin−1 − = −30, whereas the reference angle is actually 30°
2

NOW ONLY DO YOU SOLVE THE TWO EQUATIONS IN THE CHOSEN QUADRANTS:
Q3 2𝑥 = 𝟏𝟖𝟎° + 14,62° + 𝑛. 360°, 𝑛 ∈ ℤ
2𝑥 = 165,38° + 𝑛. 360°
∴ 𝑥 = 82,69° + 𝑛. 180° NOTE: Also divide the 360 by 2
Q4 2𝑥 = 𝟑𝟔𝟎° − 14,62° + 𝑛. 360° The + 𝑛360° or + 𝑛180° must
2𝑥 = 345,38° + 𝑛. 360° appear as soon as you start
working in the two quadrants.
𝑥 = 172,69° + 𝑛. 180°

𝑛 ∈ ℤ needs to appear ONCE
only somewhere in your solution.

2
$4.58
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
kalebroodt

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
kalebroodt Cape Peninsula University of Technology
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
4
Miembro desde
4 año
Número de seguidores
3
Documentos
49
Última venta
3 año hace

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes