100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Entrevista

How to sketch a cubic function

Puntuación
-
Vendido
-
Páginas
9
Subido en
24-11-2021
Escrito en
2021/2022

This document includes ALL necessary information related to sketching a cubic functions; the necessary heading ,etc.

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado
Schooljaar
200

Información del documento

Subido en
24 de noviembre de 2021
Número de páginas
9
Escrito en
2021/2022
Tipo
Entrevista
Empresa
Desconocido
Personaje
Desconocido

Temas

Vista previa del contenido

Cubic function graph sketching

When we sketch any graph we find out what its distinguishing features are and by plotting these
distinguishing features we are able to draw our graph accurately enough.

So what are the distinguishing features of a cubic function?

The graph of a hypothetical cubic function 𝑦 = 𝑎𝑥 3 + 𝑏𝑥 2 + 𝑐𝑥 + 𝑑 is shown below:


𝑦
𝑦 − intercept




Point of inflection


𝑥



𝑥 − intercepts

Turning points / Stationary points
The distinguishing features are:

 The 𝒙 − and 𝒚 − intercepts
Where the graph cuts the 𝑥 and 𝑦 axes respectively
These are found by setting 𝑦 = 0 and 𝑥 = 0 respectively.
 The stationary points
Where the graph has a horizontal tangent.
An example of a stationary point that we are familiar with is that of a turning point.
But not all stationary points are turning points.
The stationary points are found by finding the points where the derivative of the curve is 0.
𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑝𝑜𝑖𝑛𝑡𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 𝑤ℎ𝑒𝑟𝑒 𝑦 ′ = 𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 = 0.
 The point of inflection
This is the point where the curve goes from being concave up to concave down or vice versa.
This is also the point where 𝑦 ′′ = 0.
A graph is A graph is
CONCAVE UP CONCAVE DOWN
when all of its when all of its
tangent lines are tangent lines are
below the curve. above the curve.
(Arms up) (Arms down)

 Shape
The final distinguishing feature is the shape of the graph, subtle changes in the equation of
the function can make drastic changes to the shape of the curve.


1

, The graph on the left:
 increases first then decreases and then increases again,
 has two distinct turning points (stationary points)
The graph on the right:
 initially decreases, then appears to flatten out, but then decreases again without ever
increasing
 has no distinct turning point, but does have a point (3;27) where the tangent to the curve is
horizontal (definition of a stationary point)
Despite the differences, they both only have one 𝑥 − intercept, not the 3 that we saw in our
hypothetical example.

STEPS TO SKETCHING A CUBIC FUCTION:

STEP 1: Determine the BASIC SHAPE of the graph:

If 𝑎 > 0 then the graph will start off increasing from left to right
If 𝑎 < 0 then the graph will decrease initially

𝑎>0 𝑎<0




Why does the graph look the way it looks?

For 𝑎 > 0:

When 𝑥 is a negative number of a large magnitude, then 𝑦 will also be a high magnitude negative
number, on the other hand as 𝑥 gets very large 𝑦 will get very large too. This causes the tails on the
left and right to go off towards negative infinity and positive infinity, respectively.

This is because when we cube a large number it will dwarf the same number squared and cubing
preserves signs whereas squaring a number is always positive. Cubing a smaller number is closer in
value to squaring the same value.

Cubing a fraction on the other hand will have a lower magnitude than squaring the same fraction.




2
$3.27
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
kalebroodt

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
kalebroodt Cape Peninsula University of Technology
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
4
Miembro desde
4 año
Número de seguidores
3
Documentos
49
Última venta
3 año hace

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes