100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary mathématiques,provide well-written of Mathematics summary for student

Puntuación
-
Vendido
-
Páginas
12
Subido en
21-11-2021
Escrito en
2020/2021

Documents summarized by the best university professors,

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
21 de noviembre de 2021
Número de páginas
12
Escrito en
2020/2021
Tipo
Resumen

Temas

Vista previa del contenido

Nombres complexes


Vidéo „ partie 1. Les nombres complexes, définitions et opérations
Vidéo „ partie 2. Racines carrées, équation du second degré
Vidéo „ partie 3. Argument et trigonométrie
Vidéo „ partie 4. Nombres complexes et géométrie
Fiche d'exercices ‡ Nombres complexes


Préambule
L’équation x + 5 = 2 a ses coefficients dans N mais pourtant sa solution x = −3 n’est pas un entier naturel. Il faut ici
considérer l’ensemble plus grand Z des entiers relatifs.
p
x+5=2 2x=−3 x 2 = 12 x 2 =− 2
N ,−−−−−→ Z ,−−−−−→ Q ,−−−−−→ R ,−−−−−→ C

De même l’équation 2x = −3 a ses coefficients dans Z mais sa solution x = − 32 est dans l’ensemble plus grand des
p p
rationnels Q. Continuons ainsi, l’équation x 2 = 12 à coefficients dans Q, a ses solutions x 1 = +1/ 2 et x 2 = −1/ 2
p p p
dans l’ensemble
pp des réels R. Ensuite l’équation x 2 = − 2 à ses coefficients dans R et ses solutions x 1 = + i 2 et
x2 = − i 2 dans l’ensemble des nombres complexes C. Ce processus est-il sans fin ? Non ! Les nombres complexes
sont en quelque sorte le bout de la chaîne car nous avons le théorème de d’Alembert-Gauss suivant : « Pour n’importe
quelle équation polynomiale an x n + an−1 x n−1 + · · · + a2 x 2 + a1 x + a0 = 0 où les coefficients ai sont des complexes (ou
bien des réels), alors les solutions x 1 , . . . , x n sont dans l’ensemble des nombres complexes ».

Outre la résolution d’équations, les nombres complexes s’appliquent à la trigonométrie, à la géométrie (comme nous
le verrons dans ce chapitre) mais aussi à l’électronique, à la mécanique quantique, etc.



1. Les nombres complexes

1.1. Définition

Définition 1.
Un nombre complexe est un couple (a, b) ∈ R2 que l’on notera a + i b

, NOMBRES COMPLEXES 1. LES NOMBRES COMPLEXES 2

iR



a+ib
b


i



0 1 a R


Cela revient à identifier 1 avec le vecteur (1, 0) de R2 , et i avec le vecteur (0, 1). On note C l’ensemble des nombres
complexes. Si b = 0, alors z = a est situé sur l’axe des abscisses, que l’on identifie à R. Dans ce cas on dira que z est
réel, et R apparaît comme un sous-ensemble de C, appelé axe réel. Si b = 6 0, z est dit imaginaire et si b 6= 0 et a = 0,
z est dit imaginaire pur.


1.2. Opérations
Si z = a + i b et z 0 = a0 + i b0 sont deux nombres complexes, alors on définit les opérations suivantes :
• addition : (a + i b) + (a0 + i b0 ) = (a + a0 ) + i(b + b0 )
iR
z + z0


z0



i z


0 1 R

• multiplication : (a + i b) × (a0 + i b0 ) = (aa0 − bb0 ) + i(ab0 + ba0 ). On développe en suivant les règles de la
multiplication usuelle avec la convention suivante :
i2 = −1



1.3. Partie réelle et imaginaire
Soit z = a + i b un nombre complexe, sa partie réelle est le réel a et on la note Re(z) ; sa partie imaginaire est le
réel b et on la note Im(z).
iR



i Im(z) z



Im(z) i



0 1 Re(z) R
Re(z)

Par identification de C à R2 , l’écriture z = Re(z) + i Im(z) est unique :

 Re(z) = Re(z )
0
0
z=z ⇐⇒ et
Im(z) = Im(z 0 )
$6.98
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
hamzaboulmane

Conoce al vendedor

Seller avatar
hamzaboulmane Université Hassan II de Casablanca
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
4 año
Número de seguidores
0
Documentos
4
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes