100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Exam (elaborations) TEST BANK FOR Mathematical methods for physics and engineering 3rd Edition By Riley, Kenneth Franklin_ Hobson, Michael Paul (Solution Manual)-Converted

Puntuación
-
Vendido
-
Páginas
538
Grado
A+
Subido en
12-11-2021
Escrito en
2021/2022

It can be shown that the polynomial g(x) = 4x3 + 3x2 − 6x − 1 has turning points at x = −1 and x = 1 2 and three real roots altogether. Continue an investigation of its properties as follows. (a) Make a table of values of g(x) for integer values of x between −2 and 2. Use it and the information given above to draw a graph and so determine the roots of g(x) = 0 as accurately as possible. (b) Find one accurate root of g(x) = 0 by inspection and hence determine precise values for the other two roots. (c) Show that f(x) = 4x3 + 3x2 − 6x − k = 0 has only one real root unless −5 ≤ k ≤ 7 4 . (a) Straightforward evaluation of g(x) at integer values of x gives the following table: x −2 −1 0 1 2 g(x) −9 4 −1 0 31 (b) It is apparent from the table alone that x = 1 is an exact root of g(x) = 0 and so g(x) can be factorised as g(x) = (x−1)h(x) = (x−1)(b2x2+b1x+b0). Equating the coefficients of x3, x2, x and the constant term gives 4 = b2, b1 − b2 = 3, b0 − b1 = −6 and −b0 = −1, respectively, which are consistent if b1 = 7. To find the two remaining roots we set h(x) = 0: 4x2 + 7x + 1 = 0. 1 PRELIMINARY ALGEBRA The roots of this quadratic equation are given by the standard formula as α1,2 = −7 ± √ 49 − 16 8 . (c) When k = 1 (i.e. the original equation) the values of g(x) at its turning points, x = −1 and x = 1 2, are 4 and −11 4 , respectively. Thus g(x) can have up to 4 subtracted from it or up to 11 4 added to it and still satisfy the condition for three (or, at the limit, two) distinct roots of g(x) = 0. It follows that for k outside the range −5 ≤ k ≤ 7 4 , f(x) [= g(x) + 1 − k] has only one real root. 1.3 Investigate the properties of the polynomial equation f(x) = x7 + 5x6 + x4 − x3 + x2 − 2 = 0, by proceeding as follows. (a) By writing the fifth-degree polynomial appearing in the expression for f(x) in the form 7x5 + 30x4 + a(x − b)2 + c, show that there is in fact only one positive root of f(x) = 0. (b) By evaluating f(1), f(0) and f(−1), and by inspecting the form of f(x) for negative values of x, determine what you can about the positions of the real roots of f(x) = 0. (a) We start by finding the derivative of f(x) and note that, because f contains no linear term, f can be written as the product of x and a fifth-degree polynomial: f(x) = x7 + 5x6 + x4 − x3 + x2 − 2 = 0, f  (x) = x(7x5 + 30x4 + 4x2 − 3x + 2) = x[ 7x5 + 30x4 + 4(x − 3 8 )2 − 4( 3 8 )2 + 2] = x[ 7x5 + 30x4 + 4(x − 3 8 )2 + 23 16 ]. Since, for positive x, every term in this last expression is necessarily positive, it follows that f(x) can have no zeros in the range 0 < x < ∞. Consequently, f(x) can have no turning points in that range and f(x) = 0 can have at most one root in the same range. However, f(+∞) = +∞ and f(0) = −2 < 0 and so f(x) = 0 has at least one root in 0 < x < ∞. Consequently it has exactly one root in the range. (b) f(1) = 5, f(0) = −2 and f(−1) = 5, and so there is at least one root in each of the ranges 0 < x < 1 and −1 < x < 0. There is no simple systematic way to examine the form of a general polynomial function for the purpose of determining where its zeros lie, but it is sometimes 2 PRELIMINARY ALGEBRA helpful to group terms in the polynomial and determine how the sign of each group depends upon the range in which x lies. Here grouping successive pairs of terms yields some information as follows: x7 + 5x6 is positive for x > −5, x4 − x3 is positive for x >1 and x < 0, x2 − 2 is positive for x > √ 2 and x < − √ 2. Thus, all three terms are positive in the range(s) common to these, namely −5 < x < − √ 2 and x > 1. It follows that f(x) is positive definite in these ranges and there can be no roots of f(x) = 0 within them. However, since f(x) is negative for large negative x, there must be at least one root α with α < −5. 1.5 Construct the quadratic equations that have the following pairs of roots: (a) −6,−3; (b) 0, 4; (c) 2, 2; (d) 3 + 2i, 3 − 2i, where i2 = −1. Starting in each case from the ‘product of factors’ form of the quadratic equation, (x − α1)(x − α2) = 0, we obtain: (a) (x + 6)(x + 3) = x2 + 9x + 18 = 0; (b) (x − 0)(x − 4) = x2 − 4x = 0; (c) (x − 2)(x − 2) = x2 − 4x + 4 = 0; (d) (x − 3 − 2i)(x − 3 + 2i) = x2 + x(−3 − 2i − 3 + 2i) + (9 − 6i + 6i − 4i2) = x2 − 6x + 13 = 0. Trigonometric identities 1.7 Prove that cos π 12 = √ 3 + 1 2 √ 2 by considering (a) the sum of the sines of π/3 and π/6, (b) the sine of the sum of π/3 and π/4. (a) Using sinA + sinB = 2sin  A + B 2  cos  A − B 2  , 3 PRELIMINARY ALGEBRA we have sin π 3 + sin π 6 = 2sin π 4 cos π 12 , √ 3 2 + 1 2 = 2 √1 2 cos π 12 , cos π 12 = √ 3 + 1 2 √ 2 . (b) Using, successively, the identities sin(A + B) = sinAcosB + cosAsin B, sin(π − θ) = sinθ and cos( 1 2π − θ) = sinθ, we obtain sin π 3 + π 4  = sin π 3 cos π 4 + cos π 3 sin π 4 , sin 7π 12 = √ 3 2 √1 2 + 1 2 √1 2 , sin 5π 12 = √ 3 + 1 2 √ 2 , cos π 12

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
12 de noviembre de 2021
Número de páginas
538
Escrito en
2021/2022
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

$20.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
GradeMaster1 Chamberlain School Of Nursing
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
85
Miembro desde
4 año
Número de seguidores
79
Documentos
1025
Última venta
6 meses hace
GradeMaster1

Unlocking the potential of minds, one subject at a time. We are a team of passionate tutors specializing in nursing, engineering, science, and education. With our knowledge and expertise, we guide students towards academic excellence and career success. Join us on this educational journey!

3.5

18 reseñas

5
6
4
3
3
6
2
0
1
3

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes