100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Exam (elaborations) TEST BANK FOR Elementary Linear Algebra with Applications 9th Edition By Kolman, Hill (Solution manual)

Puntuación
-
Vendido
-
Páginas
170
Grado
A+
Subido en
10-11-2021
Escrito en
2021/2022

Exam (elaborations) TEST BANK FOR Elementary Linear Algebra with Applications 9th Edition By Kolman, Hill (Solution manual) Instructor’s Solutions Manual Elementary Linear Algebra with Applications Ninth Edition Bernard Kolman Drexel University David R. Hill Temple University Contents Preface iii 1 Linear Equations and Matrices 1 1.1 Systems of Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Algebraic Properties of Matrix Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5 Special Types of Matrices and Partitioned Matrices . . . . . . . . . . . . . . . . . . . . . . . . 9 1.6 Matrix Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.7 Computer Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.8 Correlation Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2 Solving Linear Systems 27 2.1 Echelon Form of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 Solving Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3 Elementary Matrices; Finding A−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4 Equivalent Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.5 LU-Factorization (Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3 Determinants 37 3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 Properties of Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3 Cofactor Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4 Inverse of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.5 Other Applications of Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4 Real Vector Spaces 45 4.1 Vectors in the Plane and in 3-Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.3 Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.4 Span . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.5 Span and Linear Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.6 Basis and Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.7 Homogeneous Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.8 Coordinates and Isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.9 Rank of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 ii CONTENTS Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5 Inner Product Spaces 71 5.1 Standard Inner Product on R2 and R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.2 Cross Product in R3 (Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.3 Inner Product Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.4 Gram-Schmidt Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.5 Orthogonal Complements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.6 Least Squares (Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6 Linear Transformations and Matrices 93 6.1 Definition and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.2 Kernel and Range of a Linear Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.3 Matrix of a Linear Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.4 Vector Space of Matrices and Vector Space of Linear Transformations (Optional) . . . . . . . 99 6.5 Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.6 Introduction to Homogeneous Coordinates (Optional) . . . . . . . . . . . . . . . . . . . . . . 103 Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 7 Eigenvalues and Eigenvectors 109 7.1 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 7.2 Diagonalization and Similar Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7.3 Diagonalization of Symmetric Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 8 Applications of Eigenvalues and Eigenvectors (Optional) 129 8.1 Stable Age Distribution in a Population; Markov Processes . . . . . . . . . . . . . . . . . . . 129 8.2 Spectral Decomposition and Singular Value Decomposition . . . . . . . . . . . . . . . . . . . 130 8.3 Dominant Eigenvalue and Principal Component Analysis . . . . . . . . . . . . . . . . . . . . 130 8.4 Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 8.5 Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 8.6 Real Quadratic Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 8.7 Conic Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 8.8 Quadric Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 10 MATLAB Exercises 137 Appendix B Complex Numbers 163 B.1 Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 B.2 Complex Numbers in Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Chapter 1 Linear Equations and Matrices Section 1.1, p. 8 2. x = 1, y = 2, z = −2. 4. No solution. 6. x = 13 + 10t, y = −8 − 8t, t any real number. 8. Inconsistent; no solution. 10. x = 2, y = −1. 12. No solution. 14. x = −1, y = 2, z = −2. 16. (a) For example: s = 0, t = 0 is one answer. (b) For example: s = 3, t = 4 is one answer. (c) s = t2 . 18. Yes. The trivial solution is always a solution to a homogeneous system. 20. x = 1, y = 1, z = 4. 22. r = −3. 24. If x1 = s1, x2 = s2, . . . , xn = sn satisfy each equation of (2) in the original order, then those same numbers satisfy each equation of (2) when the equations are listed with one of the original ones interchanged, and conversely. 25. If x1 = s1, x2 = s2, . . . , xn = sn is a solution to (2), then the pth and qth equations are satisfied. That is, ap1s1 + · · · + apnsn = bp aq1s1 + · · · + aqnsn = bq. Thus, for any real number r, (ap1 + raq1)s1 + · · · + (apn + raqn)sn = bp + rbq. Then if the qth equation in (2) is replaced by the preceding equation, the values x1 = s1, x2 = s2, . . . , xn = sn are a solution to the new linear system since they satisfy each of the equations. 2 Chapter 1 26. (a) A unique point. (b) There are infinitely many points. (c) No points simultaneously lie in all three planes. 28. No points of intersection: C1 C2 C2 C1 One point of intersection: C1 C2 Two points of intersection: C1 C2 Infinitely many points of intersection: C1= C2 30. 20 tons of low-sulfur fuel, 20 tons of high-sulfur fuel. 32. 3.2 ounces of food A, 4.2 ounces of food B, and 2 ounces of food C. 34. (a) p(1) = a(1)2 + b(1) + c = a + b + c = −5 p(−1) = a(−1)2 + b(−1) + c = a − b + c = 1 p(2) = a(2)2 + b(2) + c = 4a + 2b + c = 7. (b) a = 5, b = −3, c = −7. Section 1.2, p. 19 2. (a) A = ! """""# 0 1 0 0 1 1 0 1 1 1 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 $ %%%%%& (b) A = ! """""# 0 1 1 1 1 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 1 0 0 0 0 $ %%%%%& . 4. a = 3, b = 1, c = 8, d = −2. 6. (a) C + E = E + C = ! # 5 −5 8 4 2 9 5 3 4 $ &. (b) Impossible. (c) ' 7 −7 0 1 ( . (d) ! # −9 3 −9 −12 −3 −15 −6 −3 −9 $ &. (e) ! # 0 10 −9 8 −1 −2 −5 −4 3 $ &. (f) Impossible. 8. (a) AT = ! # 1 2 2 1 3 4 $ &, (AT )T = ' 1 2 3 2 1 4 ( . (b) ! # 5 4 5 −5 2 3 8 9 4 $ &. (c) ' −6 10 11 17 ( . Section 1.3 3 (d) ' 0 −4 4 0 ( . (e) ! # 3 4 6 3 9 10 $ &. (f) ' 17 2 −16 6 ( . 10. Yes: 2 ' 1 0 0 1 ( + 1 ' 1 0 0 0 ( = ' 3 0 0 2 ( . 12. ! # ! − 1 −2 −3 −6 ! + 2 −3 −5 −2 ! − 4 $ &. 14. Because the edges can be traversed in either direction. 16. Let x = ! """# x1 x2 ... xn $ %%%& be an n-vector. Then x + 0 = ! """# x1 x2 ... xn $ %%%& + ! """# 0 0 ... 0 $ %%%& = ! """# x1 + 0 x2 + 0 ... xn + 0 $ %%%& = ! """# x1 x2 ... xn $ %%%& = x. 18. )n i=1 )m j=1 aij = (a11 + a12 + · · · + a1m) + (a21 + a22 + · · · + a2m) + · · · + (an1 + an2 + · · · + anm) = (a11 + a21 + · · · + an1) + (a12 + a22 + · · · + an2) + · · · + (a1m + a2m + · · · + anm) = )m j=1 )n i=1 aij . 19. (a) True. )n i=1 (ai + 1) = )n i=1 ai + )n i=1 1 = )n i=1 ai + n. (b) True. )n i=1 * + )m j=1 1 , - = )n i=1 m = mn. (c) True. ! # )n i=1 ai $ & ! # )m j=1 bj $ & = a1 )m j=1 bj + a2 )m j=1 bj + · · · + an )m j=1 bj = (a1 + a2 + · · · + an) )m j=1 bj = )n i=1 ai )m j=1 bj = )m j=1 . )n i=1 aibj / 20. “new salaries” = u + .08u = 1.08u. Section 1.3, p. 30 2. (a) 4. (b) 0. (c) 1. (d) 1. 4. x = 5. 4 Chapter 1 6. x = ±"2, y = ±3. 8. x = ±5. 10. x = 65 , y = 12 5 . 12. (a) Impossible. (b) ! # 0 −1 1 12 5 17 19 0 22 $ &. (c) ! # 15 −7 14 23 −5 29 13 −1 17 $ &. (d) ! # 8 8 14 13 13 9 $ &. (e) Impossible. 14. (a) ' 58 12 66 13 ( . (b) Same as (a). (c) ' 28 8 38 34 4 41 ( . (d) Same as (c). (e) ' 28 32 16 18 ( ; same. (f) ' −16 −8 −26 −30 0 −31 ( . 16. (a) 1. (b) −6. (c) 0 −3 0 1 1 . (d) ! #−1 4 2 −2 8 4 3 −12 −6 $ &. (e) 10. (f) ! # 9 0 −3 0 0 0 −3 0 1 $ &. (g) Impossible. 18. DI2 = I2D = D. 20. ' 0 0 0 0 ( . 22. (a) ! ""# 1 14 0 13 $ %%& . (b) ! ""# 0 18 3 13 $ %%& . 24. col1(AB) = 1 ! # 1 2 3 $ & + 3 ! #−2 4 0 $ & + 2 ! #−1 3 −2 $ &; col2(AB) = −1 ! # 1 2 3 $ & + 2 ! #−2 4 0 $ & + 4 ! #−1 3 −2 $ &. 26. (a) −5. (b) BAT 28. Let A = 0 aij 1 be m × p and B = 0 bij 1 be p × n. (a) Let the ith row of A consist entirely of zeros, so that aik = 0 for k = 1, 2, . . . , p. Then the (i, j) entry in AB is )p k=1 aikbkj = 0 for j = 1, 2, . . . , n. (b) Let the jth column of A consist entirely of zeros, so that akj = 0 for k = 1, 2, . . . , m. Then the (i, j) entry in BA is )m k=1 bikakj = 0 for i = 1, 2, . . . , m. 30. (a) ! ""# 2 3 −3 1 1 3 0 2 0 3 2 3 0 −4 0 0 0 1 1 1 $ %%& . (b) ! ""# 2 3 −3 1 1 3 0 2 0 3 2 3 0 −4 0 0 0 1 1 1 $ %%& ! """""# x1 x2 x3 x4 x5 $ %%%%%& = ! ""# 7 −2 3 5 $ %%& . Section 1.3 5 (c) ! ""# 2 3 −3 1 1 7 3 0 2 0 3 −2 2 3 0 −4 0 3 0 0 1 1 1 5 $ %%& 32. ' −2 3 1 −5 (' x1 x2 ( = ' 5 4 ( . 34. (a) 2x1 + x2 + 3x3 + 4x4 = 0 3x1 − x2 + 2x3 = 3 −2x1 + x2 − 4x3 + 3x4 = 2 (b) same as (a). 36. (a) x1 ' 3 1 ( + x2 ' 2 −1 ( + x3 ' 1 4 ( = ' 4 −2 ( . (b) x1 ! #−1 2 3 $ & + x2 ! # 1 −1 1 $ & = ! # 3 −2 1 $ &. 38. (a) ' 1 2 0 2 5 3 (! # x1 x2 x3 $ & = ' 1 1 ( . (b) ! # 1 2 1 1 1 2 2 0 2 $ & ! # x1 x2 x3 $ & = ! # 0 0 0 $ &. 39. We have u · v = )n i=1 uivi = 0 u1 u2 · · · un 1 ! """# v1 v2 ... vn $ %%%& = uT v. 40. Possible answer: ! # 1 0 0 2 0 0 3 0 0 $ &. 42. (a) Can say nothing. (b) Can say nothing. 43. (a) Tr(cA) = )n i=1 caii = c )n i=1 aii = cTr(A). (b) Tr(A + B) = )n i=1 (aii + bii) = )n i=1 aii + )n i=1 bii = Tr(A) + Tr(B). (c) Let AB = C = 0 cij 1 . Then Tr(AB) = Tr(C) = )n i=1 cii = )n i=1 )n k=1 aikbki = )n k=1 )n i=1 bkiaik = Tr(BA). (d) Since aT ii = aii, Tr(AT) = )n i=1 aT ii = )n i=1 aii = Tr(A). (e) Let ATA = B = 0 bij 1 . Then bii = )n j=1 aT ijaji = )n j=1 a2 ji =$ Tr(B) = Tr(ATA) = )n i=1 bii = )n i=1 )n j=1 a2 ij % 0. Hence, Tr(ATA) % 0. 6 Chapter 1 44. (a) 4. (b) 1. (c) 3. 45. We have Tr(AB − BA) = Tr(AB) − Tr(BA) = 0, while Tr 2' 1 0 0 1 (3 = 2. 46. (a) Let A = 0 aij 1 and B = 0 bij 1 be m × n and n × p, respectively. Then bj = ! """# b1j b2j ... bnj $ %%%& and the ith entry of Abj is )n k=1 aikbkj, which is exactly the (i, j) entry of AB. (b) The ith row of AB is 04 k aikbk1 4 k aikbk2 · · · 4 k aikbkn 1 . Since ai = 0 ai1 ai2 · · · ain 1 , we have aib = 04 k aikbk1 4 k aikbk2 · · · 4 k aikbkn 1 . This is the same as the ith row of Ab. 47. Let A = 0 aij 1 and B = 0 bij 1 be m × n and n × p, respectively. Then the jth column of AB is (AB)j = ! "# a11b1j + · · · + a1nbnj ... am1b1j + · · · + amnbnj $ %& = b1j ! "# a11 ... am1 $ %& + · · · + bnj ! "# a1n ... amn $ %& = b1jCol1(A) + · · · + bnjColn(A). Thus the jth column of AB is a linear combination of the columns of A with coefficients the entries in bj . 48. The value of the inventory of the four types of items. 50. (a) row1(A) · col1(B) = 80(20) + 120(10) = 2800 grams of protein consumed daily by the males. (b) row2(A) · col2(B) = 100(20) + 200(20) = 6000 grams of fat consumed daily by the females. 51. (a) No. If x = (x1, x2, . . . , xn), then x · x = x21 + x22 + · · · + x2 n % 0. (b) x = 0. 52. Let a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn), and c = (c1, c2, . . . , cn). Then (a) a · b = )n i=1 aibi and b · a = )n i=1 biai, so a · b = b · a. (b) (a + b) · c = )n i=1 (ai + bi)ci = )n i=1 aici + )n i=1 bici = a · c + b · c. (c) (ka) · b = )n i=1 (kai)bi = k )n i=1 aibi = k(a · b). Section 1.4 7 53. The i, ith element of the matrix AAT is )n k=1 aikaT ki = )n k=1 aikaik = )n k=1 (aik)2. Thus if AAT = O, then each sum of squares )n k=1 (aik)2 equals zero, which implies aik = 0 for each i and k. Thus A = O. 54. AC = ' 17 2 22 18 3 23 ( . CA cannot be computed. 55. BTB will be 6 × 6 while BBT is 1 × 1. Section 1.4, p. 40 1. Let A = 0 aij 1 , B = 0 bij 1 , C = 0 cij 1 . Then the (i, j) entry of A + (B + C) is aij + (bij + cij) and that of (A + B) + C is (aij + bij) + cij . By the associative law for addition of real numbers, these two entries are equal. 2. For A = 0 aij 1 , let B = 0 −aij 1 . 4. Let A = 0 aij 1 , B = 0 bij 1 , C = 0 cij 1 . Then the (i, j) entry of (A+B)C is )n k=1 (aik + bik)ckj and that of AC +BC is )n k=1 aikckj + )n k=1 bikckj. By the distributive and additive associative laws for real numbers, these two expressions for the (i, j) entry are equal. 6. Let A = 0 aij 1 , where aii = k and aij = 0 if i &= j, and let B = 0 bij 1 . Then, if i &= j, the (i, j) entry of AB is )n s=1 aisbsj = kbij , while if i = j, the (i, i) entry of AB is )n s=1 aisbsi = kbii. Therefore AB = kB. 7. Let A = 0 aij 1 and C = 0 c1 c2 · · · cm 1 . Then CA is a 1 × n matrix whose ith entry is )n j=1 cjaij . Since Aj = ! """# a1j a2j ... amj $ %%%& , the ith entry of )n j=1 cjAj is )m j=1 cjaij . 8. (a) ' cos 2" sin 2" −sin 2" cos 2" ( . (b) ' cos 3" sin 3" −sin 3" cos 3" ( . (c) ' cos k" sin k" −sin k" cos k" ( . (d) The result is true for p = 2 and 3 as shown in parts (a) and (b). Assume that it is true for p = k. Then Ak+1 = AkA = ' cos k" sin k" −sin k" cos k" (' cos " sin " −sin " cos " ( = ' cos k" cos " − sin k" sin " cos k" sin " + sin k" cos " −sin k" cos " − cos k" sin " cos k" cos " − sin k" sin " ( = ' cos(k + 1)" sin(k + 1)" −sin(k + 1)" cos(k + 1)" ( . Hence, it is true for all positive integers k. 8 Chapter 1 10. Possible answers: A = ' 1 0 0 1 ( ; A = ' 0 1 1 0 ( ; A = ! # 1 "2 1 "2 1 "2 − 1 "2 $ &. 12. Possible answers: A = ' 1 1 −1 −1 ( ; A = ' 0 0 0 0 ( ; A = ' 0 1 0 0 ( . 13. Let A = 0 aij 1 . The (i, j) entry of r(sA) is r(saij ), which equals (rs)aij and s(raij ). 14. Let A = 0 aij 1 . The (i, j) entry of (r + s)A is (r + s)aij , which equals raij + saij , the (i, j) entry of rA + sA. 16. Let A = 0 aij 1 , and B = 0 bij 1 . Then r(aij + bij) = raij + rbij . 18. Let A = 0 aij 1 and B = 0 bij 1 . The (i, j) entry of A(rB) is )n k=1 aik(rbkj), which equals r )n k=1 aikbkj, the (i, j) entry of r(AB). 20. 16 A, k = 16 . 22. 3. 24. If Ax = rx and y = sx, then Ay = A(sx) = s(Ax) = s(rx) = r(sx) = ry. 26. The (i, j) entry of (AT )T is the (j, i) entry of AT , which is the (i, j) entry of A. 27. (b) The (i, j) entry of (A + B)T is the (j, i) entry of 0 aij + bij 1 , which is to say, aji + bji. (d) Let A = 0 aij 1 and let bij = aji. Then the (i, j) entry of (cA)T is the (j, i) entry of 0 caij 1 , which is to say, cbij . 28. (A + B)T = ! # 5 0 5 2 1 2 $ &, (rA)T = ! # −4 −8 −12 −4 −8 12 $ &. 30. (a) ! #−34 17 −51 $ &. (b) ! #−34 17 −51 $ &. (c) BTC is a real number (a 1 × 1 matrix). 32. Possible answers: A = ' 1 −3 0 0 ( ; B = ' 1 2 23 1 ( ; C = ' −1 2 0 1 ( . A = ' 2 0 3 0 ( ; B = ' 0 0 1 0 ( ; C = ' 0 0 0 1 ( . 33. The (i, j) entry of cA is caij , which is 0 for all i and j only if c = 0 or aij = 0 for all i and j. 34. Let A = ' a b c d ( be such that AB = BA for any 2 × 2 matrix B. Then in particular, ' a b c d (' 1 0 0 0 ( = ' 1 0 0 0 (' a b c d ( ' a 0 c 0 ( = ' a b 0 0 ( so b = c = 0, A = ' a 0 0 d ( . Section 1.5 9 Also ' a 0 0 d (' 1 1 0 0 ( = ' 1 1 0 0 (' a 0 0

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
10 de noviembre de 2021
Número de páginas
170
Escrito en
2021/2022
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

, Instructor’s Solutions Manual


Elementary Linear
Algebra with
Applications
Ninth Edition




Bernard Kolman
Drexel University


David R. Hill
Temple University

,Contents

Preface iii

1 Linear Equations and Matrices 1
1.1 Systems of Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Algebraic Properties of Matrix Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Special Types of Matrices and Partitioned Matrices . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Matrix Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.7 Computer Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.8 Correlation Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Solving Linear Systems 27
2.1 Echelon Form of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Solving Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 Elementary Matrices; Finding A−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4 Equivalent Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5 LU -Factorization (Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Determinants 37
3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Properties of Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Cofactor Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Inverse of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5 Other Applications of Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Real Vector Spaces 45
4.1 Vectors in the Plane and in 3-Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Span . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5 Span and Linear Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.6 Basis and Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.7 Homogeneous Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.8 Coordinates and Isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.9 Rank of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

, ii CONTENTS

Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Inner Product Spaces 71
5.1 Standard Inner Product on R2 and R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Cross Product in R3 (Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 Inner Product Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4 Gram-Schmidt Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.5 Orthogonal Complements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.6 Least Squares (Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 Linear Transformations and Matrices 93
6.1 Definition and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2 Kernel and Range of a Linear Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3 Matrix of a Linear Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.4 Vector Space of Matrices and Vector Space of Linear Transformations (Optional) . . . . . . . 99
6.5 Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.6 Introduction to Homogeneous Coordinates (Optional) . . . . . . . . . . . . . . . . . . . . . . 103
Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7 Eigenvalues and Eigenvectors 109
7.1 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2 Diagonalization and Similar Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.3 Diagonalization of Symmetric Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8 Applications of Eigenvalues and Eigenvectors (Optional) 129
8.1 Stable Age Distribution in a Population; Markov Processes . . . . . . . . . . . . . . . . . . . 129
8.2 Spectral Decomposition and Singular Value Decomposition . . . . . . . . . . . . . . . . . . . 130
8.3 Dominant Eigenvalue and Principal Component Analysis . . . . . . . . . . . . . . . . . . . . 130
8.4 Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.5 Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.6 Real Quadratic Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.7 Conic Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.8 Quadric Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

10 MATLAB Exercises 137

Appendix B Complex Numbers 163
B.1 Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
B.2 Complex Numbers in Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
$13.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Expert001 Chamberlain School Of Nursing
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
798
Miembro desde
4 año
Número de seguidores
566
Documentos
1190
Última venta
3 días hace
Expert001

High quality, well written Test Banks, Guides, Solution Manuals and Exams to enhance your learning potential and take your grades to new heights. Kindly leave a review and suggestions. We do take pride in our high-quality services and we are always ready to support all clients.

4.2

159 reseñas

5
104
4
18
3
14
2
7
1
16

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes