100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Exam (elaborations) TEST BANK FOR Digital Signal Processing 4th Edition by J. Proakis and D. Manolakis (Instructor Solution Manual)

Puntuación
-
Vendido
-
Páginas
432
Grado
A+
Subido en
10-11-2021
Escrito en
2021/2022

Exam (elaborations) TEST BANK FOR Digital Signal Processing 4th Edition by J. Proakis and D. Manolakis (Instructor Solution Manual) Chapter 1 1.1 (a) One dimensional, multichannel, discrete time, and digital. (b) Multi dimensional, single channel, continuous-time, analog. (c) One dimensional, single channel, continuous-time, analog. (d) One dimensional, single channel, continuous-time, analog. (e) One dimensional, multichannel, discrete-time, digital. 1.2 (a) f = 0.01 2 = 1 200 ⇒ periodic with Np = 200. (b) f = 30 105 ( 1 2 ) = 1 7 ⇒ periodic with Np = 7. (c) f = 3 2 = 3 2 ⇒ periodic with Np = 2. (d) f = 3 2 ⇒ non-periodic. (e) f = 62 10 ( 1 2 ) = 31 10 ⇒ periodic with Np = 10. 1.3 (a) Periodic with period Tp = 2 5 . (b) f = 5 2 ⇒ non-periodic. (c) f = 1 12 ⇒ non-periodic. (d) cos(n 8 ) is non-periodic; cos( n 8 ) is periodic; Their product is non-periodic. (e) cos( n 2 ) is periodic with period Np=4 sin( n 8 ) is periodic with period Np=16 cos( n 4 +  3 ) is periodic with period Np=8 Therefore, x(n) is periodic with period Np=16. (16 is the least common multiple of 4,8,16). 1.4 (a) w = 2k N implies that f = k N . Let α = GCD of (k,N), i.e., k = k′α,N = N′α. Then, f = k′ N′ , which implies that N′ = N α . 3 (b) N = 7 k = 0 1 2 3 4 5 6 7 GCD(k,N) = 7 1 1 1 1 1 1 7 Np = 1 7 7 7 7 7 7 1 (c) N = 16 k = 0 1 2 3 4 5 6 7 8 9 10 11 12 . . . 16 GCD(k,N) = 16 1 2 1 4 1 2 1 8 1 2 1 4 . . . 16 Np = 1 6 8 16 4 8 16 4 . . . 1 1.5 (a) Refer to fig 1.5-1 (b) 25 30 −3 −2 −1 0 1 2 3 −−−> t (ms) −−−> xa(t) Figure 1.5-1: x(n) = xa(nT) = xa(n/Fs) = 3sin(πn/3) ⇒ f = 1 2π ( π 3 ) = 1 6 ,Np = 6 4 0 10 20 t (ms) 3 -3 Figure 1.5-2: (c)Refer to fig 1.5-2 x(n) = n 0, 3 √2 , 3 √2 , 0,− 3 √2 ,− 3 √2 o ,Np = 6. (d) Yes. x(1) = 3 = 3sin( 100π Fs ) ⇒ Fs = 200 samples/sec. 1.6 (a) x(n) = Acos(2πF0n/Fs + θ) = Acos(2π(T/Tp)n + θ) But T/Tp = f ⇒ x(n) is periodic if f is rational. (b) If x(n) is periodic, then f=k/N where N is the period. Then, Td = ( k f T) = k( Tp T )T = kTp. Thus, it takes k periods (kTp) of the analog signal to make 1 period (Td) of the discrete signal. (c) Td = kTp ⇒ NT = kTp ⇒ f = k/N = T/Tp ⇒ f is rational ⇒ x(n) is periodic. 1.7 (a) Fmax = 10kHz ⇒ Fs ≥ 2Fmax = 20kHz. (b) For Fs = 8kHz, Ffold = Fs/2 = 4kHz ⇒ 5kHz will alias to 3kHz. (c) F=9kHz will alias to 1kHz. 1.8 (a) Fmax = 100kHz, Fs ≥ 2Fmax = 200Hz. (b) Ffold = Fs 2 = 125Hz. 5 1.9 (a) Fmax = 360Hz, FN = 2Fmax = 720Hz. (b) Ffold = Fs 2 = 300Hz. (c) x(n) = xa(nT) = xa(n/Fs) = sin(480πn/600) + 3sin(720πn/600) x(n) = sin(4πn/5) − 3sin(4πn/5) = −2sin(4πn/5). Therefore, w = 4π/5. (d) ya(t) = x(Fst) = −2sin(480πt). 1.10 (a) Number of bits/sample = log21024 = 10. Fs = [10, 000 bits/sec] [10 bits/sample] = 1000 samples/sec. Ffold = 500Hz. (b) Fmax = 1800π 2π = 900Hz FN = 2Fmax = 1800Hz. (c) f1 = 600π 2π ( 1 Fs ) = 0.3; f2 = 1800π 2π ( 1 Fs ) = 0.9; But f2 = 0.9 > 0.5 ⇒ f2 = 0.1. Hence, x(n) = 3cos[(2π)(0.3)n] + 2cos[(2π)(0.1)n] (d) △ = xmax−xmin m−1 = 5−(−5) 1023 = 10 1023 . 1.11 x(n) = xa(nT) = 3cos  100πn 200  + 2sin  250πn 200  6 = 3cos πn 2  − 2sin  3πn 4  T′ = 1 1000 ⇒ ya(t) = x(t/T′) = 3cos  π1000t 2  − 2sin  3π1000t 4  ya(t) = 3cos(500πt) − 2sin(750πt) 1.12 (a) For Fs = 300Hz, x(n) = 3cos πn 6  + 10sin(πn) − cos πn 3  = 3cos πn 6  − 3cos πn 3  (b) xr(t) = 3cos(10000πt/6) − cos(10000πt/3) 1.13 (a) Range = xmax − xmin = 12.7. m = 1 + range △ = 127 + 1 = 128 ⇒ log2(128) = 7 bits. (b) m = 1 + 127 0.02 = 636 ⇒ log2(636) ⇒ 10 bit A/D. 1.14 R = (20 samples sec ) × (8 bits sample ) = 160 bits sec Ffold = Fs 2 = 10Hz. Resolution = 1volt 28 − 1 = 0.004. 1.15 (a) Refer to fig 1.15-1. With a sampling frequency of 5kHz, the maximum frequency that can be represented is 2.5kHz. Therefore, a frequency of 4.5kHz is aliased to 500Hz and the frequency of 3kHz is aliased to 2kHz. 7 0 50 100 −1 −0.5 0 0.5 1 Fs = 5KHz, F0=500Hz 0 50 100 −1 −0.5 0 0.5 1 Fs = 5KHz, F0=2000Hz 0 50 100 −1 −0.5 0 0.5 1 Fs = 5KHz, F0=3000Hz 0 50 100 −1 −0.5 0 0.5 1 Fs = 5KHz, F0=4500Hz Figure 1.15-1: (b) Refer to fig 1.15-2. y(n) is a sinusoidal signal. By taking the even numbered samples, the sampling frequency is reduced to half i.e., 25kHz which is still greater than the nyquist rate. The frequency of the downsampled signal is 2kHz. 1.16 (a) for levels = 64, using truncation refer to fig 1.16-1. for levels = 128, using truncation refer to fig 1.16-2. for levels = 256, using truncation refer to fig 1.16-3. 8 100 −1 −0.5 0 0.5 1 F0 = 2KHz, Fs=50kHz 50 −1 −0.5 0 0.5 1 F0 = 2KHz, Fs=25kHz Figure 1.15-2: −1 −0.5 0 0.5 1 levels = 64, using truncation, SQNR = 31.3341dB −−> n −−> x(n) −1 −0.5 0 0.5 1 −−> n −−> xq(n) −0.04 −0.03 −0.02 −0.01 0 −−> n −−> e(n) Figure 1.16-1: 9 −1 −0.5 0 0.5 1 levels = 128, using truncation, SQNR = 37.359dB −−> n −−> x(n) −1 −0.5 0 0.5 1 −−> n −−> xq(n) −0.02 −0.015 −0.01 −0.005 0 −−> n −−> e(n) Figure 1.16-2: −1 −0.5 0 0.5 1 levels = 256, using truncation, SQNR=43.7739dB −−> n −−> x(n) −1 −0.5 0 0.5 1 −−> n −−> xq(n) −8 −6 −4 −2 0 x 10−3 −−> n −−> e(n) Figure 1.16-3: 10 (b) for levels = 64, using rounding refer to fig 1.16-4. for levels = 128, using rounding refer to fig 1.16-5. for levels = 256, using rounding refer to fig 1.16-6. −1 −0.5 0 0.5 1 levels = 64, using rounding, SQNR=32.754dB −−> n −−> x(n) −1 −0.5 0 0.5 1 −−> n −−> xq(n) −0.04 −0.02 0 0.02 0.04 −−> n −−> e(n) Figure 1.16-4: 11 −1 −0.5 0 0.5 1 levels = 128, using rounding, SQNR=39.2008dB −−> n −−> x(n) −1 −0.5 0 0.5 1 −−> n −−> xq(n) −0.02 −0.01 0 0.01 0.02 −−> n −−> e(n) Figure 1.16-5: −1 −0.5 0 0.5 1 levels = 256, using rounding, SQNR=44.0353dB −−> n −−> x(n) −1 −0.5 0 0.5 1 −−> n −−> xq(n) −0.01 −0.005 0 0.005 0.01 −−> n −−> e(n) Figure 1.16-6: 12 (c) The sqnr with rounding is greater than with truncation. But the sqnr improves as the number of quantization levels are increased. (d) levels theoretical sqnr 43.9000 49.9200 55.9400 sqnr with truncation 31.3341 37.359 43.7739 sqnr with rounding 32.754 39.2008 44.0353 The theoretical sqnr is given in the table above. It can be seen that theoretical sqnr is much higher than those obtained by simulations. The decrease in the sqnr is because of the truncation and rounding. 13 14 Chapter 2 2.1 (a) x(n) =  . . . 0, 1 3 , 2 3 ,1↑ , 1, 1, 1, 0, . . .  . Refer to fig 2.1-1. (b) After folding s(n) we have -3 -2 -1 0 1 2 3 4 1 1 1 1 1/3 2/3 Figure 2.1-1: x(−n) =  . . . 0, 1, 1, 1,1↑ , 2 3 , 1 3 , 0, . . .  . After delaying the folded signal by 4 samples, we have x(−n + 4) =  . . . 0,0↑ , 1, 1, 1, 1, 2 3 , 1 3 , 0, . . .  . On the other hand, if we delay x(n) by 4 samples we have x(n − 4) =  . . .0↑ , 0, 1 3 , 2 3 , 1, 1, 1, 1, 0, . . .  . Now, if we fold x(n − 4) we have x(−n − 4) =  . . . 0, 1, 1, 1, 1, 2 3 , 1 3 , 0,0↑ , . . .  15 (c) x(−n + 4) =  . . .0↑ , 1, 1, 1, 1, 2 3 , 1 3 , 0, . . .  (d) To obtain x(−n + k), first we fold x(n). This yields x(−n). Then, we shift x(−n) by k samples to the right if k > 0, or k samples to the left if k < 0. (e) Yes. x(n) = 1 3 δ(n − 2) + 2 3 δ(n + 1) + u(n) − u(n − 4) 2.2 x(n) =  . . . 0, 1,1↑ , 1, 1, 1 2 , 1 2 , 0, . . .  (a) x(n − 2) =  . . . 0,0↑ , 1, 1, 1, 1, 1 2 , 1 2 , 0, . . .  (b) x(4 − n) =  . . . 0, 1 2↑ , 1 2 , 1, 1, 1, 1, 0, . . .   (see 2.1(d)) (c) x(n + 2) =  . . . 0, 1, 1, 1,1↑ , 1 2 , 1 2 , 0, . . .  (d) x(n)u(2 − n) =  . . . 0, 1,1↑ , 1, 1, 0, 0, . . .  (e) x(n − 1)δ(n − 3) =  . . .0↑ , 0, 1, 0, . . .  (f) x(n2) = {. . . 0, x(4), x(1), x(0), x(1), x(4), 0, . . .} =  . . . 0, 1 2 , 1,1↑ , 1, 1 2 , 0, . . .  (g) xe(n) = x(n) + x(−n) 2 , x(−n) =  . . . 0, 1 2 , 1 2 , 1, 1,1↑ , 1, 0, . . .  =  . . . 0, 1 4 , 1 4 , 1 2 , 1, 1, 1, 1 2 , 1 4 , 1 4 , 0, . . .  16 (h) xo(n) = x(n) − x(−n) 2 =  . . . 0,− 1 4 ,− 1 4 ,− 1 2 , 0, 0, 0, 1 2 , 1 4 , 1 4 , 0, . . .  2.3 (a) u(n) − u(n − 1) = δ(n) =   0, n < 0 1, n = 0 0, n > 0 (b) Xn k=−∞ δ(k) = u(n) =  0, n < 0 1, n ≥ 0 ∞X k=0 δ(n − k) =  0, n < 0 1, n ≥ 0 2.4 Let xe(n) = 1 2 [x(n) + x(−n)], xo(n) = 1 2 [x(n) − x(−n)]. Since xe(−n) = xe(n) and xo(−n) = −xo(n), it follows that x(n) = xe(n) + xo(n). The decomposition is unique. For x(n) =  2, 3,4↑ , 5, 6  , we have xe(n) =  4, 4,4↑ , 4, 4  and xo(n) =  −2,−1,0↑ , 1, 2  . 17 2.5 First, we prove that ∞X n=−∞ xe(n)xo(n) = 0 ∞X n=−∞ xe(n)xo(n) = ∞X m=−∞ xe(−m)xo(−m) = − ∞X m=−∞ xe(m)xo(m) = − ∞X n=−∞ xe(n)xo(n) = ∞X n=−∞ xe(n)xo(n) = 0 Then, ∞X n=−∞ x2(n) = ∞X n=−∞ [xe(n) + xo(n)]2 = ∞X n=−∞ x2e(n) + ∞X n=−∞ x2o(n) + ∞X n=−∞ 2xe(n)xo(n) = Ee + Eo 2.6 (a) No, the system is time variant. Proof: If x(n) → y(n) = x(n2) x(n − k) → y1(n) = x[(n − k)2] = x(n2 + k2 − 2nk) 6= y(n − k) (b) (1) x(n) =  0,1↑ , 1, 1, 1, 0, . . .  (2) y(n) = x(n2) =  . . . , 0, 1,1↑ , 1, 0, . . .  (3) y(n − 2) =  . . . , 0,0↑ , 1, 1, 1, 0, . . .  18 (4) x(n − 2) =  . . . ,0↑ , 0, 1, 1, 1, 1, 0, . . .  (5) y2(n) = T [x(n − 2)] =  . . . , 0, 1, 0,0↑ , 0, 1, 0, . . .  (6) y2(n) 6= y(n − 2) ⇒ system is time variant. (c) (1) x(n) =  1↑ , 1, 1, 1  (2) y(n) =  1↑ , 0, 0, 0, 0,−1  (3) y(n − 2) =  0↑ , 0, 1, 0, 0, 0, 0,−1  (4) x(n − 2) =  0↑ , 0, 1, 1, 1, 1, 1  (5) y2(n) =  0↑ , 0, 1, 0, 0, 0, 0,−1  (6) y2(n) = y(n − 2). The system is time invariant, but this example alone does not constitute a proof. (d) (1) y(n) = nx(n), x(n) =  . . . , 0,1↑ , 1, 1, 1, 0, . . .  (2) y(n) =  . . . ,0↑ , 1, 2, 3, . . .  (3) y(n − 2) =  . . . ,0↑ , 0, 0, 1, 2, 3, . . .  (4) x(n − 2) =  . . . , 0,0↑ , 0, 1, 1, 1, 1, . . .  19 (5) y2(n) = T [x(n − 2)] = {. . . , 0, 0, 2, 3, 4, 5, . . .} (6) y2(n) 6= y(n − 2) ⇒ the system is time variant. 2.7 (a) Static, nonlinear, time invariant, causal, stable. (b) Dynamic, linear, time invariant, noncausal and unstable. The latter is easily proved. For the bounded input x(k) = u(k), the output becomes y(n) = nX+1 k=−∞ u(k) =  0, n < −1 n + 2, n ≥ −1 since y(n) → ∞ as n → ∞, the system is unstable. (c) Static, linear, timevariant, causal, stable. (d) Dynamic, linear, time invariant, noncausal, stable. (e) Static, nonlinear, time invariant, causal, stable. (f) Static, nonlinear, time invariant, causal, stable. (g) Static, nonlinear, time invariant, causal, stable. (h) Static, linear, time invariant, causal, stable. (i) Dynamic, linear, time variant, noncausal, unstable. Note that the bounded input x(n) = u(n) produces an unbounded output. (j) Dynamic, linear, time variant, noncausal, stable. (k) Static, nonlinear, time invariant, causal, stable. (l) Dynamic, linear, time invariant, noncausal, stable. (m) Static, nonlinear, time invariant, causal, stable. (n) Static, linear, time invariant, causal, stable. 2.8

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
10 de noviembre de 2021
Número de páginas
432
Escrito en
2021/2022
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

,Chapter 1


1.1
(a) One dimensional, multichannel, discrete time, and digital.
(b) Multi dimensional, single channel, continuous-time, analog.
(c) One dimensional, single channel, continuous-time, analog.
(d) One dimensional, single channel, continuous-time, analog.
(e) One dimensional, multichannel, discrete-time, digital.


1.2
(a) f = 0.01π 1
2π = 200 ⇒ periodic with Np = 200.
(b) f = 105 ( 2π ) = 17 ⇒ periodic with Np = 7.
30π 1

(c) f = 2π = 32 ⇒ periodic with Np = 2.
3
(d) f = 2π ⇒ non-periodic.
(e) f = 62π 1 31
10 ( 2π ) = 10 ⇒ periodic with Np = 10.



1.3
(a) Periodic with period Tp = 2π 5 .
5
(b) f = 2π ⇒ non-periodic.
1
(c) f = 12π ⇒ non-periodic.
n
(d) cos( 8 ) is non-periodic; cos( πn 8 ) is periodic; Their product is non-periodic.
(e) cos( πn
2 ) is periodic with period Np =4
sin( πn
8 ) is periodic with period N p =16
cos( πn
4 + π
3 ) is periodic with period Np =8
Therefore, x(n) is periodic with period Np =16. (16 is the least common multiple of 4,8,16).


1.4
2πk k
(a) w = N implies that f = N. Let

α = GCD of (k, N ), i.e.,

k = k ′ α, N = N ′ α.
Then,
k′
f= , which implies that
N′
N
N′ = .
α

3

,(b)

N = 7
k = 01234567
GCD(k, N ) = 71111117
Np = 17777771


(c)

N = 16
k = 0 1 2 3 4 5 6 7 8 9 10 11 12 . . . 16
GCD(k, N ) = 16 1 2 1 4 1 2 1 8 1 2 1 4 . . . 16
Np = 1 6 8 16 4 16 8 16 2 16 8 16 4 . . . 1




1.5
(a) Refer to fig 1.5-1
(b)

3



2



1
−−−> xa(t)




0



−1



−2



−3
0 5 10 15 20 25 30
−−−> t (ms)


Figure 1.5-1:


x(n) = xa (nT )
= xa (n/Fs )
= 3sin(πn/3) ⇒
1 π
f = ( )
2π 3
1
= , Np = 6
6

4

, 3




t (ms)
0 10 20


-3




Figure 1.5-2:

(c)Refer nto fig 1.5-2 o
x(n) = 0, √32 , √32 , 0, − √32 , − √32 , Np = 6.
(d) Yes.
100π
x(1) = 3 = 3sin( ) ⇒ Fs = 200 samples/sec.
Fs

1.6
(a)
x(n) = Acos(2πF0 n/Fs + θ)
= Acos(2π(T /Tp )n + θ)
But T /Tp = f ⇒ x(n) is periodic if f is rational.
(b) If x(n) is periodic, then f=k/N where N is the period. Then,
k Tp
Td = ( T ) = k( )T = kTp .
f T
Thus, it takes k periods (kTp ) of the analog signal to make 1 period (Td ) of the discrete signal.
(c) Td = kTp ⇒ N T = kTp ⇒ f = k/N = T /Tp ⇒ f is rational ⇒ x(n) is periodic.


1.7
(a) Fmax = 10kHz ⇒ Fs ≥ 2Fmax = 20kHz.
(b) For Fs = 8kHz, Ffold = Fs /2 = 4kHz ⇒ 5kHz will alias to 3kHz.
(c) F=9kHz will alias to 1kHz.


1.8
(a) Fmax = 100kHz, Fs ≥ 2Fmax = 200Hz.
(b) Ffold = F2s = 125Hz.

5
$13.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Expert001 Chamberlain School Of Nursing
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
798
Miembro desde
4 año
Número de seguidores
566
Documentos
1190
Última venta
3 días hace
Expert001

High quality, well written Test Banks, Guides, Solution Manuals and Exams to enhance your learning potential and take your grades to new heights. Kindly leave a review and suggestions. We do take pride in our high-quality services and we are always ready to support all clients.

4.2

159 reseñas

5
104
4
18
3
14
2
7
1
16

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes