100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Networks and Graphs Summary

Puntuación
-
Vendido
2
Páginas
10
Subido en
22-10-2021
Escrito en
2020/2021

Summary of the slides of Jacopo Urbani and Ali Mehrabi based on the book "Graph Theory and Complex Networks" by Maarten van Steen. It discusses chapters 2, 3, 4, 5, 6, 7, and 9. *Study material of following years may differ*

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
22 de octubre de 2021
Número de páginas
10
Escrito en
2020/2021
Tipo
Resumen

Temas

Vista previa del contenido

X_401010 Networks and Graphs
Index

Chapter 2 - Foundations ....................................................................................................................................1
Chapter 3 - Extensions ......................................................................................................................................3
Chapter 4 - Network Traversal ..........................................................................................................................3
Chapter 5 - Trees ...............................................................................................................................................5
Chapter 6 - Network Analysis ...........................................................................................................................6
Chapter 7 - Random Networks..........................................................................................................................7
Chapter 9 - Social Networks .............................................................................................................................8

Chapter 2 - Foundations

➤2.1 Graphs & Degrees
• Graph(G): Consists of V(G) set of vertices and E(G) set of edges.
• Edge: Connects 2 vertices u and v and is denoted by ⟨u, v⟩.
• For any u ∈ V(G) the neighbor set N(u) is the set of all vertices adjacent to u except for u itself.
• A graph is simple if it does not contain multiple edges between the same pair of vertices nor loops.
• The degree δ(v) of a vertex is the number of edges attached to vertex v. Loops are counted twice.
• Handshaking lemma: ∑v ∈ V(G)δ(v) = 2 |E(G)| for all graphs G, meaning for any graph the sum of the
degrees of vertices equals 2 times the number of edges in the graph.
• Degree sequence: A list of the degrees of the vertices in a graph. It is ordered if the numbers are in
non-increasing order. E.g. [1,0,0] & [2,2,2]
• A sequence of numbers is graphic if it is the degree sequence of a simple graph. E.g. [2,2,2]

➤2.2 Two Ways of Graph Representation
• Properties of an adjacency matrix:
- Symmetry i.e. ∀u, v : A[u, v] = A[v, u]
- Whether a graph is simple or not i.e. ∀u, v : A[u, v] ≤ 1 and A[u, u] = 0
- The sum of the numbers on each row should be equal to the degree of that vertex.
• Properties of an incidence matrix:
- The sum of the numbers in each column must be exactly 2.
- The sum of the numbers on each row should be equal to the degree of that vertex.




Fig.1.1 Example graph Fig.1.2 Matrices for the graph (1):Adjacency (2):Incidence
➤2.3 Subgraphs
• H is a subgraph of G if V(H) ⊆ V(G) and E(H) ⊆ E(G) and for all ⟨u, v⟩ ∈ E(H) there is u, v ∈ V(H).
• G[V*]: Subgraph induced by V* ⊆ V(G) has vertex set V* and edge set {⟨u, v⟩ ∈ E(G) | u, v ∈ V*}.
• G[E*]: Subgraph induced by E* ⊆ E(G) has edge set E* and vertex set {u, v ∈ V(G) | ⟨u, v⟩ ∈ E*}.

➤2.4 Graph Isomorphisms
• Graphs G1 and G2 are isomorphic if there is a one-to-one mapping. φ : V(G1) → V(G2). The graphs
have vertices with the same combinations of edges.
• For 2 graphs to be isomorphic it has to have the same amount of vertices, edges, and the ordered
degree sequence of the graphs have to be the same.
• Further it can be determined by the naïve algorithm or the Babai and Luks algorithm.

➤2.5 The Theorem of Havel-Hakimi
• Let [s, t1, t2, …, ts, d1, …, dn] be an ordered sequence. This sequence is graphic if and only if the
sequence [t1 - 1, t2 - 1, …, ts - 1, d1, …, dn] is graphic too.
• To determine this with the Havel-Hakimi theorem, continuously apply the “only if direction” (erase
the most left vertex) until the base case is reached. Then determine whether the base case is graphic.
• E.g. [4,4,2,2,2] => [3,1,1,1] => [0,0,0]. [0,0,0] is graphic, therefore [4,4,2,2,2] is graphic.
1

, ➤2.7 Paths, Cycles and Connectivity
• A (v0, vk)-walk is a sequence [v0, e1, v1, e2, …, vk - 1, ek, vk] with ei = ⟨vi - 1, vi⟩ for all i = 1,…,k.
• A (u, v)-path is a (u, v)-walk over distinct vertices.
• In a simple graph, a cycle is a (u, v)-path of at least 3 edges over distinct vertices except u = v.
• If a simple graph does not contain any cycles, it is acyclic.
• Two vertices u, v in G are connected if there is a (u, v)-path in G.
• Connectivity indicates that each vertex can be reached by any other vertex in the network.
• A component of a graph G is a connected subgraph that is not strictly contained in another connected
subgraph of G.

➤2.8 Vertex and Edge Cuts
• V* ⊆ V(G) is a vertex cut of G if removing the vertices in V* (and their edges) from G yields a non-
connected graph.
• E* ⊆ E(G) is an edge cut of G if removing the edge in E* from G yields a non-connected graph.
• It is of interest to find the minimum number of vertices or edges to remove for a graph to fall apart. So,
κ(G) is the minimum vertices that need to be removed, and λ(G) is the minimum number of edges.
• κ(G) ≤ λ(G) ≤ minv ∈ V(G){δ(v)}(minimum degree of G)

➤2.8 K-Connectivity and Harary Graphs
• A graph G is k-connected if κ(G) ≥ k vertices. Meaning you can’t disconnect Hk, n by removing less
than k vertices.
• Harary graph(Hk, n): A k-connected simple graph with n vertices and with a minimal number of
edges. There are 3 cases for combinations of k and n.
- k is even: Connect each vertex to its k/2 closest left-hand & right-hand neighbors.
- k is odd, n is even: Construct Hk-1, n and add n/2 edges, joining vertices at n/2 distance(opposites)
- k is odd, n is odd: Construct Hk-1, n and add the (n+1)/2 edges, joining vertices at (n-1)/2 distance
• The vertices in all have degree k, except if k and n are both odd, then vertex (n-1)/2 has degree k + 1.

➤2.9 Menger’s Theorem
• Let P(u, v) be a set of (u, v)-paths in a simple graph:
- Vertex independent: ∀P, Q ∈ P(u, v) : V(P) ∩ V(Q) = {u, v}, different paths that have only u and
v in common.
- Edge independent: ∀P, Q ∈ P(u, v) : E(P) ∩ E(Q) = ∅, different paths don’t share any edges.
• Menger’s Theorem: The minimum size of a vertex cut disconnecting nonadjacent vertices u ≠ v
equals the maximum size of a vertex-independent set P(u, v). The minimum size of an edge cut
disconnecting vertices u ≠ v equals the maximum size of an edge-independent set P(u, v).

➤2.10 Bipartite Graphs
• A graph G is bipartite if V(G) = V1 ∪ V2 (G is split in two) such that:
- V1 ∩ V2 = ∅; they don’t have shared vertices
- E(G) ⊆ {⟨u, v⟩ | v1 ∈ V1 and v2 ∈ V2 }; any edge of G must connect a vertex from V1 to one of V2.
• Bipartite graphs are often drawn as ranked embeddings. This will make it more obvious to say
whether a graph is bipartite or not. A ranked embedding is made as follows:
- Choose a vertex and put all the vertices where they’re connected to through an edge in a
horizontal row above. Do the same with those vertices until all vertices are in a row.
- If all the vertices on the same row do not have an edge connected them, the graph is bipartite.
- The number of rows is the number of possible disjoint subsets.
➤2.11 Planar Graphs & Euler’s Formula
• A simple and connected graph is planar if there exists a drawing in the 2D plane such that no two
edges cross.
• In any planar graph of n ≥ 1 vertices, m ≥ 0 edges and r ≥ 1 regions (regions closed off because of
edges and vertices, including the exterior region), then n − m + r = 2. This is the Euler’s formula.
• For any planar graph G with n ≥ 3 vertices and m edges: m ≤ 3n − 6.
• Every planar graph G has at least one vertex v with δ(v) ≤ 5.




2
$7.85
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
syntryx Vrije Universiteit Amsterdam
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
64
Miembro desde
7 año
Número de seguidores
44
Documentos
15
Última venta
10 meses hace

4.8

9 reseñas

5
7
4
2
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes