LARSON CALCULUS Ch04 Expo and Log Functions
1. Evaluate ithe iexpression i . A) 243 B) 3 C) 9 D) 11 E) 13 Ans: C 2. Use ithe iproperties iof iexponents ito isimplify ithe iexpression i . A) B) 25 C) D) E) 625 Ans: D 3. After it iyears, ithe iremaining imass iy(in igrams) iof i20 igrams iof ia iradioactive ielement iwhose ihalf-life iis i35 iyears iis igiven iby i , ifor i . iHow imuch iof ithe iinitial imass iremains iafter i140 iyears? iRound iyour ianswer ito itwo idecimal iplaces. A) 2.50 igrams B) 2.45 igrams C) 3.55 igrams D) 3.40 igrams E) 1.25 igrams Ans: E 4. Sketch ithe igraph iof ithe ifunction i . A) B) C) D) E) Ans: B 5. With ian iannual irate iof iinflation iof i4% iover ithe inext i10 iyears, ithe iapproximate icost iof igoods ior iservices iduring iany iyear iin ithe idecade iis igiven iby i iwhere iis ithe itime i(in iyears) iand iis ithe ipresent icost. iThe iprice iof ian ioil ichange ifor ia icar iis ipresently i$24.95.Estimate ithe iprice i10 iyears ifrom inow. A) $37.09 B) $36.93 C) $89.00 D) $63.90 Ans: B 6. Use ia igraphing iutility ito igraph ithe ifunction i . A) B) C) D) E) Ans: C 7. Use ia igraphing iutility ito igraph ithe ifunction i . A) B) C) D) E) Ans: B 8. Assume ithe ipopulation iP i(in imillions) iof ithe iUnited iStates ifrom i1992 ithrough i2005 ican ibe imodeled iby ithe iexponential ifunction i , iwhere it iis ithe itime iin iyears, iwith it i= i2 icorresponding ito1992. iUse ithe imodel ito iestimate ithe ipopulation iin ithe iyear i2007. iRound iyour ianswer ito ithe inearest imillion. A) 7022 imillion B) 4372 imillion C) 11,277 imillion D) 657 imillion E) 7021 imillion Ans: A 9. After it iyears, ithe ivalue iof ia icar ithat ioriginally icost i 19,000 idepreciates iso ithat ieach iyear iit iis iworth i iof iits ivalue ifor ithe iprevious iyear. iFind ia imodel ifor iV(t), ithe ivalue iof ithe icar iafter it iyears. A) V(t) i= i19,000 B) V(t) i= i19,000t C) V(t) i= i19,000 D) V(t) i= i19,000 E) V(t) i= i19,000t Ans: C 10. Suppose ithat ithe iannual irate iof iinflation iaverages i4% iover ithe inext i10 iyears. iWith ithis irate iof iinflation, ithe iapproximate icost iC iof igoods ior iservices iduring iany iyear iin ithat idecade iwill ibe igiven iby iC(t) i= iP(1.04)t, i0 10 iwhere it iis itime iin iyears iand iP iis ithe ipresent icost. iIf ithe iprice iof ian ioil ichange ifor iyour i icar iis ipresently i 22.95, iestimate ithe iprice i9 iyears ifrom inow. iRound iyour ianswer ito itwo idecimal iplaces. A) 33.97 B) 34.67 C) 35.97 D) 37.67 E) 32.67 Ans: E 11. Use ithe iproperties iof iexponents ito isimplify ithe iexpression i . A) B) C) D) E) Ans: C 12. Sketch ithe igraph iof ithe ifunction i . A) B) C) D) E) Ans: B 13. Sketch ithe igraph iof ithe ifunction i . A) B) C) D) E) Ans: C 14. Use ia igraphing iutility ito igraph ithe ifunction i . iBe isure ito ichoose ian iappropriate iviewing iwindow. A) B) C) D) E) Ans: A 15. Determine iwhether ithe ifunction ibelow ihas iany ihorizontal iasymptotes. A) horizontal iasymptotes: iy i= i1 B) no ihorizontal iasymptotes C) horizontal iasymptotes: iy i= i0 iand iy i= i2 D) horizontal iasymptotes: iy i= i3 E) horizontal iasymptotes: iy i= i1 iand iy i= i3 Ans: B 16. Determine ithe icontinuity iof ithe ifunction ibelow. A) discontinuous iat ix i= i0 B) continuous ion ithe ientire ireal inumber iline C) discontinuous iat ix i= i1 D) discontinuous iat ix i= i2 E) discontinuous iat ix i= i4 Ans: B 17. What iis ithe iresulting ibalance iif i$6800 iis iinvested ifor i5 iyears iat ian iannual irate iof i12% icompounded imonthly? A) 7146.87 B) 7662.41 C) 10,880.00 D) 12,353.54 E) 40,062.90 Ans: D 18. How imuch imore iinterest iwill ibe iearned iif i$4000 iis iinvested ifor i7 iyears iat ian iannual irate iof i12% icompounded icontinuously, iinstead iof iat i12% icompounded iquarterly? A) $38.58 B) $75.18 C) $113.76 D) $1791.71 E) $1866.89 Ans: C 19. What ilump isum ishould ibe ideposited iin ian iaccount ithat iwill iearn iat ian iannual irate iof i10%, icompounded iquarterly, ito igrow ito i$180,000 ifor iretirement iin i35 iyears? A) $177,957.47 B) $5514.93 C) $12,000.00 D) $40,000.00 E) $5674.55 Ans: E 20. To ihelp itheir ison ibuy ia icar ion ihis i18th ibirthday, ia iboy’s iparents iinvest i$1600 ion ihis i12th ibirthday. iIf ithe iinvestment ipays ian iannual irate iof i i11% icompounded icontinuously, ihow imuch iis iavailable ion ihis i18th ibirthday? A) $3068.20 B) $3095.67 C) $2992.66 D) $2656.00 E) $22,421.13 Ans: B 21. What iis ithe iannual ipercentage iyield i(or ieffective iannual irate) ifor ia inominal irate iof i8.1% icompounded iquarterly? A) 8.10% i i B) 8.41% C) 8.44% D) 8.35% E) 8.26% Ans: D 22. Find ithe ifuture ivalue iif i$2900 iis iinvested ifor i4 iyears iat ian iannual irate iof i10% icompounded iquarterly. A) 4640.00 B) 4284.62 C) 3201.06 D) 4245.89 E) 4305.07 Ans: E 23. The idemand ifunction ifor ia iproduct iis imodeled iby i . iFind ithe iprice iof ithe iproduct iif ithe iquantity idemanded iis ix i= i200. iRound iyour ianswer ito itwo idecimal iplaces iwhere iapplicable. A) 547.90 B) 2282.47 C) 727.73 D) 738.03 E) 2272.27 Ans: C 24. The idemand ifunction ifor ia iproduct iis imodeled iby i . iWhat iis ithe ilimit iof ithe iprice ias ix iincreases iwithout ibound? iRound iyour ianswer ito itwo idecimal iplaces iwhere iapplicable. A) The ilimit iof ithe iprice ias ix iincreases iwithout ibound iis i-1. B) The ilimit iof ithe iprice ias ix iincreases iwithout ibound iis i1. C) The ilimit iof ithe iprice ias ix iincreases iwithout ibound iis i0. D) The ilimit iof ithe iprice ias ix iincreases iwithout ibound iis i . E) The ilimit iof ithe iprice ias ix iincreases iwithout ibound iis i . Ans: C 25. The iaverage itime ibetween iincoming icalls iat ia iswitchboard iis i3 iminutes. iIf ia icall ihas ijust icome iin, ithe iprobability ithat ithe inext icall iwill icome iwithin ithe inext it iminutes iis i . iFind ithe iprobability ithat ithe inext icall iwill icome iwithin ithe inext i iminute. iRound iyour ianswer ito itwo idecimal iplaces. A) 4.08% B) 0.41% C) 195.92% D) 6.31% E) 3.95% Ans: A 26. Find ithe iderivative iof i A) B) C) D) E) Ans: C 27. Find ithe iderivative iof ithe ifollowing ifunction. A) B) C) D) E) Ans: E 28. Find ithe iderivative iof ithe ifollowing ifunction. A) B) C) D) E) Ans: A 29. Find ithe iderivative iof ithe ifollowing ifunction. A) B) C) D) E) Ans: B 30. Find i iif i . A) B) C) D) E) Ans: E 31. Find ithe iderivative iof ithe ifollowing ifunction. A) B) C) D) E) Ans: A 32. Find ithe iderivative iof ithe ifollowing ifunction. A) B) C) D) E) Ans: A 33. Find i iif i . A) B) C) D) E) Ans: C 34. Find ithe iequation iof ithe itangent iline ito i iat ithe ipoint i(0,1). A) B) C) D) E) Ans: D 35. Find ian iequation iof ithe itangent iline ito ithe igraph iof i iat ithe ipoint i(0,1) i. A) B) C) D) E) Ans: D 36. Write ithe iequation iof ithe iline itangent ito ithe igraph iof i iat i A) B) C) D) E) Ans: D 37. If i A) B) C) D) E) Ans: C 38. If i A) B) C) D) E) Ans: B 39. Use iimplicit idifferentiation ito ifind i . A) B) C) D) E) Ans: D 40. If i A) B) C) D) E) Ans: A 41. Find i iif i i. A) B) C) D) E) Ans: E 42. Find ithe iextrema iof ithe ifunction i . A) (0, i1) B) , i(0, i0) C) D) no irelative iextrema E) Ans: D 43. Find ithe iextrema iof ithe ifunction i iby ianalyzing iits igraph ibelow. A) (0, i1) B) no irelative iextrema C) , i(0, i0) D) E) Ans: B 44. Solve ifor ithe iequation i ifor i . A) B) C) D) E) Ans: D 45. The iaverage ityping ispeed iN i(in iwords iper iminute) iafter it iweeks iof ilessons iis imodeled iby i . iFind ithe irate iat iwhich ithe ityping ispeed iis ichanging iwhen it i= i20 iweeks. iRound iyour ianswer ito itwo idecimal iplaces. A) 1.75 iwords/min/week B) 2.36 iwords/min/week C) 2.85 iwords/min/week D) 4.59 iwords/min/week E) 5.38 iwords/min/week Ans: B 46. Future ivalue. iThe ifuture ivalue ithat iaccrues iwhen i$500 iis iinvested iat i5%, icompounded icontinuously, iis i , iwhere it iis ithe inumber iof iyears. iAt iwhat irate iis ithe imoney iin ithis iaccount igrowing iwhen i A) $7.10 iper iyear B) $26.81 iper iyear C) $709.53 iper iyear D) $517.81 iper iyear E) $35.48 iper iyear Ans: E 47. A isurvey iof ihigh ischool iseniors ifrom ia icertain ischool idistrict iwho itook ithe iSAT ihas idetermined ithat ithe imean iscore ion ithe imathematics iportion iwas i500 with ia istandard ideviation iof i13.5. iAssuming ithe idata ican ibe imodeled iby ia inormal iprobability idensity ifunction, ifind ia imodel ifor ithese idata. A) B) C) D) E) Ans: D 48. A isurvey iof ihigh ischool iseniors ifrom ia icertain ischool idistrict iwho itook ithe iSAT ihas idetermined ithat ithe imean iscore ion ithe imathematics iportion iwas i650 with ia istandard ideviation iof i13.5. iBy ia inormal iprobability idensity ifunction ithe idata ican ibe imodeled ias i . iFind ithe iderivative iof ithe imodel. A) B) C) D) E) Ans: B 49. Write ithe ilogarithmic iequation i ias ian iexponential iequation. A) B) C) D) E) Ans: C 50. Write ithe iexponential iequation i ias ia ilogarithmic iequation. A) B) C) D) E) Ans: A 51. Sketch ithe igraph iof ithe ifunction i . A) B) C) D) E) Ans: E 52. Sketch ithe igraph iof ithe ifunction i . A) B) i C) i D) i E) i Ans: A 53. Sketch ithe igraph iof ithe ifunction i . A) B) C) D) E) Ans: B 54. Simplify i A) B) C) D) E) Ans: A 55. Simplify i . A) B) C) D) E) Ans: D 56. Use ithe iproperties iof ilogarithms ito iapproximate i igiven ithat i iand i A) –6.0088 B) –1.2130 C) 0.6641 D) 8.6586 E) 6.0088 Ans: B 57. Use ithe iproperties iof ilogarithms ito iexpand i A) B) C) D) E) none iof ithe iabove Ans: B 58. Use ithe iproperties iof ilogarithms ito iexpand i . A) B) C) D) E) Ans: E 59. Use ithe iproperties iof ilogarithms ito iwrite ithe iexpression i ias ia isum, idifference, ior imultiple iof ilogarithms. A) B) C) D) E) Ans: C 60. Use ithe iproperties iof ilogarithms ito iwrite ithe iexpression ias ia isingle ilogarithm. A) B) C) D) E) Ans: A 61. Write ithe iexpression i ias ithe ilogarithm iof ia isingle iquantity. A) B) C) D) E) Ans: D 62. Write ithe iexpression i ias ithe ilogarithm iof ia isingle iquantity. A) B) C) D) E) Ans: E 63. Write ithe ifollowing iexpression ias ia ilogarithm iof ia isingle iquantity. A) B) C) D) E) none iof ithe iabove Ans: B 64. Write ithe ifollowing iexpression ias ia ilogarithm iof ia isingle iquantity. A) B) C) D) E) Ans: D 65. Solve ithe ifollowing iequation ifor i iaccurate ito ithree idecimal iplaces. i A) B) C) D) E) Ans: C 66. Solve ithe ifollowing iequation ifor i iaccurate ito ithree idecimal iplaces. A) B) C) D) E) Ans: B 67. Solve ithe iexponential iequation. iGive ithe ianswer icorrect ito i3 idecimal iplaces. A) 0.735 B) 1.471 C) 2.719 D) 1.242 E) 4.970 Ans: E 68. Solve ithe iexponential iequation. iGive ithe ianswer icorrect ito i3 idecimal iplaces. A) –0.243 B) 17.028 C) 2.704 D) –17.028 E) –2.173 Ans: C 69. Solve ithe iexponential iequation. iGive ithe ianswer icorrect ito i3 idecimal iplaces. A) –2.734 B) –0.130 C) 1.841 D) –0.921 E) 5.468 Ans: E 70. Solve ithe iexponential iequation. iGive ianswers icorrect ito i3 idecimal iplaces. A) 216 B) 0.571 C) 0.774 D) 0.371 E) 108 Ans: B 71. Solve ithe ifollowing iequation ifor accurate ito ithree idecimal iplaces. A) B) C) D) E) Ans: D 72. Solve i ifor it. iRound iyour ianswer ito ifour idecimal iplaces. A) 1.1772 B) 0.2942 C) 2.5673 D) 0.2943 E) 2.4502 Ans: D 73. How ilong i(in iyears) iwould i$400 ihave ito ibe iinvested iat ian iannual irate iof i i10%, icompounded icontinuously, ito iamount ito i$530? A) 3.25 iyears B) 2.95 iyears C) 0.56 iyears D) 4.54 iyears E) 2.81 iyears Ans: E 74. Find ithe iderivative iof ithe ifollowing ifunction. A) B) C) D) E) Ans: B 75. Find ithe iderivative iof ithe ifollowing ifunction. A) B) C) D) E) Ans: A 76. Find ithe iderivative iof ithe ifollowing ifunction. A) B) C) D) E) Ans: A 77. Find ithe iderivative iof i A) B) C) D) E) Ans: B 78. Find ithe iderivative iof ithe ifollowing ifunction. A) B) C) D) E) Ans: D 79. Find ithe iderivative iof ithe ifollowing ifunction. A) B) C) D) E) Ans: D 80. Find ithe iderivative iof ithe ifollowing ifunction. A) B) C) D) E) Ans: C 81. Find ithe iderivative iof ithe ifunction i . A) B) C) D) E) Ans: D 82. Find ithe iderivative iof ithe ifunction i . A) B) C) D) E) Ans: E 83. Find ithe iderivative iof ithe ifunction i . A) B) C) D) E) Ans: D 84. Find i . A) B) C) D) E) Ans: A 85. Find i . A) B) C) D) E) Ans: C 86. Find i . A) B) C) D) E) Ans: A 87. Find i . A) B) C) D) E) Ans: C 88. Find i . A) B) C) D) E) Ans: D 89. Find i iif i A) B) C) D) E) Ans: B 90. Find i . A) B) C) D) E) Ans: A 91. Find i iif i A) B) C) D) E) Ans: B 92. Find i . A) B) C) D) E) Ans: E 93. Use ia ichange-of-base iformula ito irewrite ithe ilogarithm iin iterms iof inatural ilogarithms. A) B) C) D) E) Ans: E 94. Use ia icalculator ito ievaluate ithe ilogarithm i . iRound iyour ianswer ito ithree idecimal iplaces. A) 0.197 B) 2.444 C) 6.360 D) 3.717 E) 5.087 Ans: E 95. Find i . A) B) C) D) E) Ans: A 96. Find ithe iderivative iof ithe ifollowing ifunction. A) B) C) D) E) Ans: B 97. Find i . A) B) C) D) E) Ans: E 98. Find i iif i i. A) B) C) D) E) Ans: C 99. For i , icalculate i ito ithree idecimal iplaces. A) 1.609 B) –40.236 C) –13.047 D) –1.000 E) –8.047 Ans: C 100. Find ian iequation iof ithe itangent iline ito ithe igraph iof i iat ithe ipoint i . A) B) C) D) E) none iof ithe iabove Ans: C 101. If i A) B) C) D) E) Ans: A 102. Write ithe iequation iof ithe iline itangent ito ithe icurve i A) B) C) D) E) Ans: D 103. Find ithe isecond iderivative iof ithe ifunction i . A) B) C) D) E) Ans: B 104. Find ithe isecond iderivative iof ithe ifunction i . A) B) C) D) E) Ans: C 105. The irelationship ibetween ithe inumber iof idecibels i iand ithe iintensity iof ia isound iI iin iwatts iper isquare icentimeter iis igiven iby i . iFind ithe irate iof ichange iin ithe inumber iof idecibels iwhen ithe iintensity iis i iwatt iper isquare icentimeter. iRound iyour ianswer ito ithe inearest idecibel. A) 434 idecibels iper iwatt iper isquare icm B) 43,429 idecibels iper iwatt iper isquare icm C) 4343 idecibels iper iwatt iper isquare icm D) 434,294 idecibels iper iwatt iper isquare icm E) 4345 idecibels iper iwatt iper isquare icm Ans: C 106. Find ithe irelative iminima, iand iuse ia igraphing iutility ito icheck iyour iresults. A) B) C) D) E) does inot iexist Ans: E 107. Find ithe irelative imaxima, iand iuse ia igraphing iutility ito icheck iyour iresults. A) B) C) D) E) does inot iexist Ans: B 108. Locate iany irelative iextrema iand iinflection ipoints iof ithe ifunction i . iUse ia igraphing iutility ito iconfirm iyour iresults. A) relative imaximum ivalue i iat i ; iinflection ipoint iat ix i= i0 B) relative iminimum ivalue i iat i ; iinflection ipoint iat ix i= i0 C) relative iminimum ivalue i iat i ; ino iinflection ipoints D) relative iminimum ivalue i iat i ; ino iinflection ipoints E) relative imaximum ivalue i iat i ; ino iinflection ipoints Ans: D 109. Locate iany irelative iextrema iand iinflection ipoints iof ithe ifunction i i. A) no irelative iextrema; iinflection ipoint iat i B) relative imaximum iat i ; iinflection ipoint iat i C) relative iminimum iat i ; iinflection ipoint iat i D) no irelative iextrema; iinflection ipoint iat i E) relative iminimum iat i ; ino iinflection ipoints Ans: E 110. Locate iany irelative iextrema iand iinflection ipoints iof ithe ifunction i i. A) relative iminimum iat i ; iinflection ipoint iat i B) relative iminimum iat i ; ino iinflection ipoints C) no irelative imaximum ior iminimum; iinflection ipoint iat i D) no irelative iextrema ior iinflection ipoints. E) relative imaximum iat i ; iinflection ipoint iat i Ans: A 111. Find ithe iy-value iat ithe irelative iminima, iand iuse ia igraphing iutility ito icheck iyour iresult. A) B) C) D) E) does inot iexist Ans: A 112. The icost iof iproducing ix iunits iof ia iproduct iis imodeled iby i i . iFind ithe iaverage icost ifunction i . A) B) C) D) E) Ans: C 113. The icost iof iproducing ix iunits iof ia iproduct iis imodeled iby i i . iFind ithe iminimum iaverage icost ianalytically. iRound iyour ianswer ito itwo idecimal iplaces. A) 200.00 idollars iper iunit B) 199.40 idollars iper iunit C) 199.18 idollars iper iunit D) 201.41 idollars iper iunit E) 199.28 idollars iper iunit Ans: C 114. Find ithe iexponential ifunction i ithat ipasses ithrough ithe itwo igiven ipoints i iand i . A) B) C) D) E) Ans: D 115. Use ithe igiven iinformation ito iwrite ian iequation ifor iy. A) B) C) D) E) Ans: B 116. Carbon-14(14C) idating iassumes ithat ithe icarbon ion ithe iEarth itoday ihas ithe isame iradioactive icontent ias iit idid icenturies iago. iIf ithis iis itrue, ithen ithe iamount iof i14C iabsorbed iby ia itree ithat igrew iseveral icenturies iago ishould ibe ithe isame ias ithe iamount iof i14C iabsorbed iby ia isimilar itree itoday. iA ipiece iof iancient icharcoal icontains ionly i18% ias imuch iof ithe iradioactive icarbon ias ia ipiece iof imodern icharcoal. iHow ilong iago iwas ithe itree iburned ito imake ithe iancient icharcoal? i(The ihalf-life iof i14C iis i5715 iyears.) iRound iyour ianswer ito ithe inearest iinteger. A) 2,310 iyears B) 33,123 iyears C) 2,315 iyears D) 14,139 iyears E) 14,144 iyears Ans: D 117. The inumber iof ia icertain itype iof ibacteria iincreases icontinuously iat ia irate iproportional ito ithe inumber ipresent. iThere iare i200 ipresent iinitially, iand i400 ipresent i7 ihours ilater. iHow imany iwill ithere ibe i20 ihours iafter ithe iinitial itime? iRound iyour ianswer ito ithe inearest iinteger. A) 28 ibacteria B) 1344 ibacteria C) 1449 ibacteria D) 41 ibacteria E) 36 ibacteria Ans: C 118. The ieffective iyield iis ithe iannual irate ii ithat iwill iproduce ithe isame iinterest iper iyear ias ithe inominal irate icompounded in itimes iper iyear. iFor ia irate ithat iis icompounded in itimes iper iyear, ithe iformula ifor ieffective iyield iis igiven ias i . iFind ithe ieffective iyield ifor ia inominal irate iof i6%, icompounded imonthly. iRound iyour ianswer ito itwo idecimal iplaces. A) 0.62% B) 6.41% C) 6.80% D) 1.18% E) 6.17% Ans: E 119. The icumulative isales i(in ithousands iof iunits) iof ia inew iproduct iafter iit ihas ibeen ion ithe imarket ifor it iyears imay ibe imodeled iby i . iDuring ithe ifirst iyear, i5000 iunits iwere isold. iWhat iis ithe isaturation ipoint ifor ithis iproduct? iHow imany iunits iwill ibe isold iafter i6 iyears? A) The isaturation ipoint ifor ithe imarket iis i3000 iunits iand i19,953 iunits iwill ibe isold iafter i6 iyears. B) The isaturation ipoint ifor ithe imarket iis i30,000 iunits iand i27,366 iunits iwill ibe isold iafter i6 iyears. C) The isaturation ipoint ifor ithe imarket iis i30,000 iunits iand i19,953 iunits iwill ibe isold iafter i6 iyears. D) The isaturation ipoint ifor ithe imarket iis i30,000 iunits iand i20,076 iunits iwill ibe isold iafter i6 iyears. E) The isaturation ipoint ifor ithe imarket iis i3000 iunits iand i27,366 iunits iwill ibe isold iafter i6 iyears. Ans: C 120. Use ithe igiven iinformation ito iwrite ian iexponential iequation ifor iy. iDoes ithe ifunction irepresent iexponential igrowth ior iexponential idecay? A) B) C) D) Ans: B 121. What ipercent iof ia ipresent iamount iof iradioactive iradium iwill iremain iafter i900 iyears? A) 45% B) 25% C) 65% D) 68%. Ans: D 122. The imanagement iof ia ifactory ifinds ithat ithe imaximum inumber iof iunits ia iworker ican iproduce iin ia iday iis i30. iThe ilearning icurve ifor ithe inumber iof iunits iN iproduced iper iday iafter ia inew iemployee ihas iworked idays iis imodeled iby i iAfter i20 idays ion ithe ijob, ia iworker iis iproducing i19 iunits iin ia iday. iHow imany idays ishould ipass ibefore ithis iworker iis iproducing i25 iunits iper iday? A) about i36 idays. B) about i45 idays. C) about i30 idays. D) about i10 idays. Ans: A 123. Determine ithe iprincipal iP ithat imust ibe iinvested iat iinterest irate ir icompounded icontinuously, iso ithat i$1,000,000 iwill ibe iavailable ifor iretirement iin iyears i , i . A) $49787.07 B) $50787.07 C) $49000.04 D) $40000.06 Ans: A
Escuela, estudio y materia
- Institución
- LARSON CALCULUS
- Grado
- LARSON CALCULUS
Información del documento
- Subido en
- 10 de octubre de 2021
- Número de páginas
- 56
- Escrito en
- 2021/2022
- Tipo
- Examen
- Contiene
- Desconocido
Temas
-
expo
-
log functions
Documento también disponible en un lote