100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

summary of all lectures ARM

Puntuación
-
Vendido
-
Páginas
43
Subido en
08-10-2021
Escrito en
2021/2022

This is a summary of all the lectures from the subject ARM. Good luck with studying! I am not a native speaker, so there will be spelling mistakes. I am sorry!

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
8 de octubre de 2021
Número de páginas
43
Escrito en
2021/2022
Tipo
Notas de lectura
Profesor(es)
Dr lucas goossens and dr martijn felder
Contiene
Todas las clases

Temas

Vista previa del contenido

Table of content

week 1 quantitative ................................................................................................................................................. 2
1.1 introduction to the course .............................................................................................................................. 2
1.2: causal efference ............................................................................................................................................ 2
1.3 DAG ............................................................................................................................................................... 4
1.4 colliders/ DAGS ............................................................................................................................................. 7

Week 2.................................................................................................................................................................... 10
2.1 OLS and Moderation.................................................................................................................................... 10
2.2 mediation...................................................................................................................................................... 12
2.3 statistical significance .................................................................................................................................. 14
2.4 beyond significance ...................................................................................................................................... 16

Week 3.................................................................................................................................................................... 19
3.1 logistics regression ...................................................................................................................................... 19
3.2 after logistic regression ............................................................................................................................... 20
3.3 DAG and table 2 fallacy .............................................................................................................................. 23
3.4 data don’t drive ............................................................................................................................................ 26

Week 4: qualitative .............................................................................................................................................. 29
4.1 : introduction ............................................................................................................................................... 29
4.2 : What is discourse? ..................................................................................................................................... 29
4.3: different forms of discourse analysis .......................................................................................................... 30
4.4 talking discourse analysis into the field ....................................................................................................... 33

Week 5.................................................................................................................................................................... 34
5.1 Ethnography on Care in Times of Covid-19 ................................................................................................ 34
5.2 ethnography in Healthcare Research .......................................................................................................... 34
5.3 theory in ethnography .................................................................................................................................. 35
5.4 quality in ethnographic research ................................................................................................................. 36

Week 6.................................................................................................................................................................... 37
6.1 what’s the problem? The three reasons for studying associations .............................................................. 37
6.3 what’s your problem? .................................................................................................................................. 42

,week 1 quantitative
1.1 introduction to the course
Main points
Part 1
• Causal inference
• OLS and Logistic regression
• Statistical significance

Part 2
• Discourse analysis
• Ethnography

Questions from today
- What was the question
- What was the underlying question
- What was actually estimated ( geschat)
- How is the estimate really an answer to the question
- What is the estimated, big, small, good?
- What does the researcher conclude

1.2: causal efference
Learning goals from today
- Explain the potential outcomes approach in causal inference and apply it in thinking
about causal effect estimation
- To define causal effects
- To apply the concepts of consistency, positivity and exchangeability in randomized an
non randomized settings.

Example : loreal Paris
Proven clinical results: 70% less imperfection in 4 weeks. 41 women got tested.
They use the words causal effects ( if you use this you get a better skin)

Causal effects = A leads to B. A treatment has a causal effect if the outcome under treatment
1 would be different from the outcome under treatment 2. What would have happened.

There was a problem with the example study
• Small sample à only except under extremely strong assumptions
• Financial by company
• No control groupà this is essential
• Potential regression towards the mean ( mostly you use those product when you skin
is very bad, of course it will be better, it cant be worser)

We are not interested in the outcome but in the roll of treatment. à how many
imperfection women have. We are interested in the role of treatment in achieving this
outcome : less imperfections than without true match minerals
Conclusion: no meaningful causal conclusion can be drawn from this study

,Woman A uses true match minerals : 2 bad spots
Woman a does not use true match minerals : 5 bad spots
Individual treatment effect : 3 spots ( 60%)
Average treatment effect: average of individual effect in a population

Causal effects :




Counterfactual outcomeà potential outcome that is not observed because the subject did
not experience the treatment( could happen if) if I did not drink the coffee I did not burn my
lip.

But there is a solution for al this. We need in a research those 3 to have a causal effect
1- Positivity
à about the example and the way it was composed. A control group.
We don’t need people with or without a lighter because we adjust for smoking
status. We need smokers with/without lighters and non smokers with or without
lighters. Positivity means there have to be a positive probability for everybody in the
sample to assign to each of the treatment levels. In the lighter case positivy seems
oke
2- Consistency
à define if. Clear definition of treatments. Does water kill? What do you mean, kill
when I drink it or drown in it?
à eat broccoli its healthy. What is healthy? How much? How often?
It is about defining the treatment. You need to be very specific when you define an
exposure or a treatment
3- Exchangeability
à does not matter who has the treatment.
à for example the lighters can not switch ( people with a lighter are mostly smokers)

Causal question: what is the effect of carrying a cigarette lighter on health?

Stratificationà you make different strata: healthy people by healthy people, smokers
by smokers etc.
Lighter Without lighter
Healthy 57% 87%
Smokers 50% 50%
Not exchangeable because lighter is not the problem for health. Its probably
smoking, so you need also a strata for smoking.

, RCT
• Select patients
• Randomly assign to treatment groups
• Random: exchangeability
• Random: positivity à because of the randomization they could be in group one but
also in group 2
• Defining interventions: consistency
With RCT you have automatically al the 3 inferences

RCT
• Limited generalizability ( external validity) due to treatment protocol and patient
selection
• Practical ethical considerations

Observational( non randomized ) study
• Real world outcomes
• Availability of data
• Internal validly threatened by lack of exchangeability
• Positivity and consistency need explicit attention

1.3 DAG

In many cases we are interested in causal effect not in just associations

Associationà statistical relationship
Causationà difference between potential outcomes
This association equals this difference if identifiability conditions hold

We need:
• Theory/subject knowledge
• Causal structure
And we design the analysis accordingly

Leaning goals
- Using graph theory assess exchangeability
- To use directed acyclic graphs in the design and evaluation of an analysis
- Rules and terms of a DAG
- To apply concepts confounder, confounding ( traditional and structural)
- Rules and terms of DAG

Adjustment to improve exchangeability
• Small numbers of factors à stratifications is possible
A complete and correct adjustment leads to exchangeability

So what should you adjust for you analyst?
$10.27
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
HEPL

Conoce al vendedor

Seller avatar
HEPL Erasmus Universiteit Rotterdam
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
4 año
Número de seguidores
0
Documentos
1
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes