100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Resumen

Summary methods: econometrics 1

Puntuación
-
Vendido
8
Páginas
12
Subido en
01-10-2021
Escrito en
2021/2022

Summary of the book, slides and my notes for the course: methods: econometrics 1.

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

¿Un libro?
No
¿Qué capítulos están resumidos?
1 until 5 (included)
Subido en
1 de octubre de 2021
Número de páginas
12
Escrito en
2021/2022
Tipo
Resumen

Temas

Vista previa del contenido

Methods: Econometrics 1
Lecture 1: Selection on observables

What is econometrics about?
Econometrics is about building alternate universes (i.e., counterfactuals), to unravel the
effects of a certain policy for example.

This econometrics 1 course is focused on the total effect of a specific treatment on the
outcome, not the channel through which this is caused (that is what we will discuss in
econometrics 2). Econometrics 2 disentangles the direct effect from the indirect effect
(mediators, etc.).

The focus of this course is also about research designs – something you must think about
before you start doing your analysis.
The research designs that we will discuss are the following:
- Selection of observables
- Randomized controlled trials
- Instrumental variable approach
- Regression discontinuity design
- Difference-in-differences

Selection on observables
A regression is only unbiased when treatment assignment is independent of potential
outcomes. All covariates must be included in the regression to ensure unbiasedness.

The problem with estimating a treatment effect is that there is no counterfactual observed.
There are 2 naïve ways of assessing this counterfactual (example is to look at the grow of a
plant using Pokon):
- Just comparing the plant at time t and time t+1, and then concluding that the plant
would have looked worse without the treatment.
o Problem: selection bias/ omitted variables bias: other things could have been
the reason for why the plant grew the way it did. It does not have to be Pokon.
This bias can lead to over- or underestimation of the real treatment effect.
Therefore, there is non-random selection into treatment (it can be the case that
you take more care of the plant after using Pokon or that you use it if your
plant is already almost dead) and this leads to the selection bias. To put it
differently, there is variable that is a common cause of both the treatment and
the outcome  “confounder”.
o Non-random selection into treatment can be realized by subjects themselves or
by a policymaker/us.
o The selection bias can be resolved if all confounders are controlled for.
However, sometimes, there might be confounders that are unobservable.
- Cross-sectional comparison: compare 2 plants, one which gets Pokon, and the other
which doesn’t get Pokon. The problem with this is that the plants can be different in
other terms as well, and, therefore, the treatment effect may be caused by other factors
than just Pokon.

Potential outcomes

, An individual has 2 potential outcomes. The first one is the road that you take and the second
one is the road that you did not take. Basically, this means the outcome if you were assigned
to treatment vs. the outcome if you were assigned to control. The unit causal effect is the
difference between those 2 potential outcomes. The problem is that we only observe one of
them.

The average causal effect is the difference between the average potential outcomes if all units
were assigned to treatment and the average of potential outcomes if all units were assigned to
control.
To estimate the average causal effect, we need to randomly assign some units to treatment
and some units to control. The mean of the random sample from the population is then the
unbiased estimator for the mean of the population, thanks to randomization.

A research design should always entail why selection into treatment was indeed random. If
this is the case, the exchangeability assumption holds (we can fairly compare treatment and
control group).

Selection bias
Y(0,i) = outcome of subject i in the control group
Y(1,i) = outcome of subject i in the treatment

Unit causal effect = Y(1,i) – Y(0,i)

Difference in group means = average causal effect + selection bias

Causal diagrams
These visualize how units were selected into treatment (i.e., your identification problem).




The causal diagram shows a causal relationship between variables in a causal model.
Some rules:
- Nodes are the variables in your model (nodes earlier in time should be on the left of
the diagram).
- Arrows are the causal connections
- A dashed arrow signifies an unobserved cause
- A causal relationship goes only in one direction
- A path is a sequence of arrows connecting two nodes: arrows can go in either
direction
o A directed path has only arrows in the same direction
- Graphs are acyclic: no directed paths from variable to itself
$6.13
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
britt1910 Tilburg University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
322
Miembro desde
5 año
Número de seguidores
207
Documentos
27
Última venta
2 semanas hace

4.3

27 reseñas

5
15
4
8
3
2
2
1
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes