100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Notas de lectura

1BM120 - Computational Intelligence

Puntuación
-
Vendido
-
Páginas
14
Subido en
12-09-2021
Escrito en
2020/2021

A summary of the lectures of Computational Intelligence and strong and weak points of the algorithms discussed in the course 1BM120.

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
12 de septiembre de 2021
Número de páginas
14
Escrito en
2020/2021
Tipo
Notas de lectura
Profesor(es)
Desconocido
Contiene
Todas las clases

Temas

Vista previa del contenido

Lecture summary 1BM120
Lecture 1: evolutionary computation
Computational intelligence is the theory, design, application and development of biologically and
linguistically motivated computational paradigms. CI consists of three pillars:

1. Evolutionary computation (and swarm intelligence)
2. Fuzzy systems
3. Neural networks

CI tends to focus on bio-inspired algorithms (genetic programming, artificial immune systems). AI is
about deductive and symbolic reasoning aiming at replicating animal (human) behavior (logic
programming, Hodgkin-Huxley neuronal models). The main overlap between CI and AI are machine
learning and neural networks.

Bio-inspired meta-heuristic are population-based iterative stochastic algorithms for global
optimization.

Any objective function can be re-stated as an optimization problem. Real-world problems are often
non-convex, non-linear, multi-model etc. Computational intelligence optimization meta-heuristics
can be employed.

- Create a random set of candidate solutions to a given optimization problem and simulate
Darwinian processes to evolve the population towards optimal solutions.
- A candidate solution is encoded as a fixed-length vector which is a feasible solution and its
quality can be evaluated by means of an objective function f (fitness function).

Genetic algorithms:

A set of randomly generated candidate solutions evolves iteratively and converges to the optimal
solution of a given problem.

1. A population of random N individuals is created
2. The fitness value of all N individuals is calculated
3. Survival of the fittest: a selection mechanism is used to choose pairs of individuals with a
probability proportional to their fitness values
4. Each pair of selected individuals (the parents) undergoes a genetic crossover: their
chromosomes are randomly exchanged to produce new individuals (the offspring)
5. The offspring undergo genetic mutation: some symbols of the individuals are randomly
changed
6. When N offsprings are created, they replace the previous population
7. If the termination criterion is met, the algorithm returns the best fitting individuals as
solution; else, perform a new generation by iterating the process from step 2.

Termination criterion:

1. Fitness value threshold
2. Fixed amount of generations
3. Loss of diversity in the population

Selection methods:

, - Roulette wheel: the probability of selecting an individual is proportional to its fitness value:
f ( xi )
Psel ( x i )= N

∑ ❑ f ( xn)
n=1
- Ranking: rank solutions according to their fitness value, the probability of selecting an
1
individual is proportional to its ranking: Psel ( x i )=
r i +1
- Tournament: a selection of individuals are chosen from the population to compete in a
tournament. The best individual wins the tournament and is selected.

Crossover:

Each of the parents, extract a random number. If this number is smaller than the crossover
probability, the parents undergo crossover.

- Single point crossover: select a random crossover point and exchange the parts from this
line.
- Uniform crossover: randomly generate a bit-mask. The mask denotes which bit is kept on
from parents 1 to offspring 1 and which are swapped form parent 1 to offspring 2.
- Partially matched crossover: special type of crossover preserving
relative order:



Mutation:

Mutation introduces new genetic material into the population.

- Uniform mutation: bit flip (1 becomes 0 and the other way
around). A high mutation probability corresponds to a random
search

Elitism: during the evolution, one excellent individual might be “destroyed” by the genetic operators.
Elitism preserves such individual, by copying the best individual to the next generation.

Premature convergence: when a GA converges too fast to a suboptimal population.

Loss of diversity: when the individuals of a GA population are too similar, so that the crossover is no
longer effective.



Handling constraints:

- Set the fitness of unfeasible solutions to extreme values,
- Penalize the fitness function,
- Fix wrong solutions,
- Use special encodings,
- Manipulate the search space.

Lecture 2: evolutionary and swarm computation
Differential evolution is a parallel direct search method based on parameters vectors for real-valued
global optimization. Evolutionary computation approach: a population of solutions evolves
$6.81
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
AnneBannink Technische Universiteit Eindhoven
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
14
Miembro desde
6 año
Número de seguidores
13
Documentos
18
Última venta
1 año hace

2.0

4 reseñas

5
0
4
0
3
2
2
0
1
2

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes