100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary How to do Linguistics with R - Natalia Levshina, Chap. 6, 7, 8, 12, 13

Puntuación
-
Vendido
2
Páginas
16
Subido en
05-06-2021
Escrito en
2020/2021

Summary of the book How to do Linguistics with R from author Natalia Levshina. Summary contains chapters 6, 7, 8, 12, 13, and a small summary of Baayen Chapter 7.1. Note: this summary is created for the course Statistics II from the bachelor Communication and Information Science and Informatiekunde. I only included information that was covered in the lectures, so irrelevant sections are left out. The document is written in English.

Mostrar más Leer menos
Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

¿Un libro?
No
¿Qué capítulos están resumidos?
Chapter 6, 7, 8, 12 & 13
Subido en
5 de junio de 2021
Número de páginas
16
Escrito en
2020/2021
Tipo
Resumen

Temas

Vista previa del contenido

CHAPTER 6
MEASURING RELATIONSHIPS BETWEEN TWO QUANTITATIVE VARIABLES

6.1 WHAT IS CORRELATION?
Positive correlation = when the values of variable X and variable Y decrease or increase
together → X increases, Y increases
Negative correlation = when the values of variable X and variable Y change in opposite
directions → X increases, Y decreases

De strength of this relationship is measured by means of a correlation coefficient → ranges
from -1 (perfect negative correlation) to 1 (perfect positive correlation)

Interval- and ratio-scaled variables: Pearson’s product-moment coefficient r
Ordinal data, interval- and ratio-scaled data transformed into ranks: Spearman’s ρ
and Kendall’s τ

6.2 THE PEARSON PRODUCT-MOMENT CORRELATION COEFFICIENT
You can create a scatterplot to visualize the relationship, including a regression line (= line
that shows the general trend in the data)

> plot(variable1 ~ variable2, main = “name of scatterplot”
> m <- lm(variable1 ~ variable2)
> abline(m)

Pearson’s product-moment coefficient r is the most common used correlation coefficient
→ is used for interval- and ratio-scaled data (requirement: normally distributed data)
> cor.test(variabele1, variabele2)

De strength of the r-value is determined as follows:
- Similar to or greater than 0.7 or smaller than -0.7 = strong
- Between 0.3 and 0.7 or between -0.3 and -0.7 = moderate
- Between 0 and 0.3 or between 0 and -0.3 = weak
- Merely 0 = no correlation
→ the closer to 0, the more points deviate from the correlation line in the plot and the
weaker the correlation

Note: a steep slope does not mean that the correlation is strong, it only shows the number of
units by which y will change if x changes.

Fitted value = a value that presents the expected location of a certain x-value on the
correlation line
Observed value = a value that presents the actual/observed value of a particular x-value on
the correlation line
Residuals = difference between the observed values and the fitted values → the smaller the
residuals, the stronger the correlation




1

,REMARKS ON THE PEARSON CORRELATION TEST
1. The relationship between variables should be monotonic and linear
→ a relationship between variables is monotonic when a decrease/increase of X results in a
decrease/increase of Y
→ a relationship between variables is linear when Y decreases/increases to the same extent
as X decreases/increases
A linear relationship is always monotonic, but a monotonic relationship is not always linear!
2. It is very sensitive towards outliers
→ outliers may result in a false correlation because of one or multiple extremely high values
→ these are called leverage points, as they draw the regression line into a particular
direction

Outliers can be excluded from the data:
> variable1_1 <- variable1(variable1 < critical point)
> length(variable1_1)

> variable2_1 <- variable2(variable 1 < critical point)
> length(variable2_1)

Create new regression line:
> m1 <- lm(variable1_1 ~ variable2_1)
> abline(m1, lty = 2)

ASSUMPTIONS OF PEARSON CORRELATION
1. The sample is randomly selected from the population it represents
2. Both variables are at least interval-scaled
3. Both variables come from a bivariate normal distribution (= for any given value of X, the
scores on Y are normally distributed) and/or the sample size is large (>30)
> mvnorm.etest(cbind(variable1_1, variable2_1), R = 999)
(H0 = normality)
4. The residual (error) variance is homoscedastic (= the relationship between variables
should be of equal strength across the entire range of both variables)
> ncvTest(lm(variable1_1 ~ variable1_2))
(H0 = error variance is homoscedastic)
5. The residuals are independent, there is no autocorrelation (= when the value of a variable
depends on its previous or next value)
> durbinWatsonTest(lm(variable1_1 ~ variable1_2))
(H0 = no autocorrelation)

SPEARMAN AND KENDALL
When the relationship is not linear but monotonic, one should use non-parametric
correlation statistics, such as Spearman’s ρ and Kendall’s τ

Spearman’s ρ is identical to Pearson’s r, with ranked scores
> cor.test(variable1, variable2, method = “spearman”)

Kendall’s τ works with differences in the ranks of each pair of observations (x1, y1). A pair of
ranks is concordant if two coordinates x2, y2 are both higher/lower than coordinates x1, y1. A
pair is discordant if one of the two coordinates x2, y2 differs positively, whereas the other
differs negatively regarding coordinates x1, y1 (and vice versa).


2

, This method is preferred when the dataset is small and has tied ranks (when two or more
observations have identical scores and therefore identical ranks)
> cor.test(variable1, variable2, method = “kendall”)

Two assumptions:
1. The sample is randomly drawn from the population
2. Both variables are on the ordinal scale of measurement (they will be transformed to ranks
by R automatically)


CHAPTER 7
MORE ON FREQUENCIES AND REACTION TIMES: LINEAR REGRESSION

7.1 THE BASIC PRINCIPLES OR LINEAR REGRESSION ANALYSIS
Regression explains and models the relationship between the response (dependent) variable,
and one or more explanatory (independent) variables
- one explanatory variable: simple linear regression
- more than one explanatory variable: multiple linear regression

Explanatory variables can be categorical to ratio-scaled, but the response variable should be
on interval or ratio scale

Regression is the same as correlation, but with directionality:
- correlation: the degree to which x and y are related
- regression: how variable x is related to variable y by means of a formula

REGRESSION LINE
A regression line visualizes the relationship between x and y. Its position and orientation can
be described by a formula:

ŷ = b0 + bx

ŷ = the fitted (expected) values of the response variable y
b0 = the intercept, i.e. the predicted value of y when x is equal to zero → when x increases by
one unit, y increases by the intercept
b = the coefficient the determines the slope of the regression line
x = the explanatory variable

The difference between ŷ and the actual value of y are the residuals.

The actual values of y can be described by the following formula:

y=ŷ+ε

So, the observed value of y for a given observation is the sum of its fitted value and the
residual.




3
$4.22
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
aesther30 Rijksuniversiteit Groningen
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
97
Miembro desde
9 año
Número de seguidores
73
Documentos
17
Última venta
3 semanas hace

Op deze pagina vind je alle samenvattingen die ik heb geschreven voor de studie Communication and Information Sciences aan de Rijksuniversiteit Groningen. Ik heb voor vrijwel alle vakken die werden afgesloten met een tentamen een samenvatting gemaakt, waarbij ik geen enkel tentamen heb hoeven herkansen. Momenteel ben ik bezig met het samenvatten van: - Visual Language, Van den Broek et al. (vak Pictures in Professional Communication)

Lee mas Leer menos
3.9

9 reseñas

5
2
4
4
3
3
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes