100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Samenvatting Inspanningsfysiologie

Puntuación
-
Vendido
-
Páginas
75
Subido en
23-05-2021
Escrito en
2020/2021

Samenvatting alle hoofdstukken

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
23 de mayo de 2021
Número de páginas
75
Escrito en
2020/2021
Tipo
Resumen

Temas

Vista previa del contenido

Inspanningsfysiologie

Hoofdstuk 1: Energie

1. Bio-energie

Dmv bladgroenkorrels halen planten hun energie via de fotosynthese uit het zonlicht
- De mens eet deze planten  onze energie die we krijgen via voedsel komt dus v/d zon
- Energie wordt opgeslagen (als ATP) zodat we ze kunnen gebruiken wanneer nodig

Principe v/d gekoppelde reactie:
- Voeding is nodig om energie te leveren, maar deze energie wordt onmiddellijk gebruikt om
ATP te vormen
- Als de cel energie nodig heeft splits die ATP  dit zorgt dan voor energie
- Energie + ADP + P  ATP

Mitochondriën:
Staan in voor de aanmaak van energie ‘pakketjes’ = ATP

Welke stoffen uit onze voeding gebruiken we?
= macronutriënten
1) Vetten (bron van energie):
o Hebben meer kilocalorieën dan koolhydraten = heel energiedens
o Worden verbruikt bij een lagere intensiteit.
o Kost meer zuurstof dan verbruik van koolhydraten  op moment dat we veel
zuurstof hebben kunnen we het ons veroorloven om vetten te gebruiken = in rust.
2) Koolhydraten (bron van energie):
o Meer gebruikt naarmate de intensiteit stijgt.
o Kost minder zuurstof, dus als we een gebrek hebben aan zuurstof zullen eerder de
koolhydraten verbrand worden.
o Wordt omgevormd tot glucose, dan 2 opties:
 Onmiddellijk gebruikt als brandstof
 Opgeslagen in de lever en spieren als glycogeen
3) Eiwitten (bouwstenen):
o Primaire functie = bouwstenen.
o Secundaire functie = aangewend als energiebron als er geen andere bronnen meer
aanwezig zijn → enkel in uiterste nood.

Verschillende systemen: deze lopen in elkaar over (eerst ATP/CP, dan neemt ANA over, dan Aeroob)
1) Creatine-fosfaat systeem:
o Het lichaam kan de opgeslagen ATP meteen omzetten om hier energie uit te krijgen
o Is snel uitgewerkt! 10 – 20s
o Creatine fosfaat zorgt voor snelle resynthese van ATP
o Vnl gebruikt bij korte intensieve activiteiten (vb. Spurt)
2) Aeroob systeem
o = zuurstof systeem
o Kan zeer lang ATP aanmaken, maar is ook beperkt!
o Heeft een tijd nodig voor dit volledig op gang komt (duurt
aantal minuten)
o Trage opstart

, 3) Anaerobe glycolyse
o Om leegte te overbruggen, of wanneer aeroob is uitgeput, maar we toch nog energie
nodig hebben

Mitochondriën:
Zorgen voor de ATP-synthese. Het is gelegen in elke cel.
- Talrijk aanwezig in spiercellen (+ zijn efficiënter)
- Afmetingen: 0.5 micrometers – 10 micrometers
- Aantallen: 1 – 1000 per cel.
- Kenmerken:
o Dubbele membraan structuur.
o Intermembraanruimte (= ruimte tss de membranen)
o De Matrix: de ruimte omsloten door het binnenste membraan
o Cristae: plooien in het binnenste membraan  vergroten van de oppervlakte en
zorgt zo dus dat er meer ATP aangemaakt kan worden
- Aanmaak van ATP:
o STAP 1: Opbouw protonengradiënt  Protonen worden verplaatst vd matrix naar de
intermembraanruimte
o STAP 2 & 3:
 ATP synthase = groot eiwitcomplex met een kanaal waarlangs protonen
terug naar binnen kunnen stromen. (Hoe groter de oppervlakte, hoe meer
eiwitten er aanwezig kunnen zijn  functie van de cristae)
 De stroom van protonen door het membraan induceert de synthese van ATP
 ADP+Pi  ATP
o Mitochondria zijn ATP-fabriekjes!

Opbouw van een skeletspier:
- Tussen myofibrillen bevinden zich mitochondriën
- Bindweefsel zit tussen en rond de spier
o Vormt het elastische deel van de spier
- Spiercel/vezel
o = Het contractiele deel van de spier, dat deel dat actief kan samentrekken
o Bestaat uit +/- 1000 myofibrillen.
- 1 myofibril bestaat uit verschillende sarcomeren.
o = een contractiele eenheid of unit, waaruit een spier is opgebouwd.
o = het ‘legoblokje’ waarmee men een myofibril en dus een spiervezel en dus een
spierbundel en uiteindelijk dus ook een spier kan bouwen
- Motor unit = motorische eenheid
o = Alle spiervezels die bezenuwd worden door dezelfde motorische eenheid
o Hoe meer motorische eenheden (units) een spier bezit, hoe beter genuanceerd de
spier gebruikt kan worden. (bv: oogspieren: 1500, biceps: 700 per spier).
o Hoe meer motorische eenheden v/e spier worden geprikkeld, hoe meer kracht deze
kan ontwikkelen!
o 1 spier kan verschillende motorische eenheden hebben

Spiercontractie:
- Prikkel = alles of niet reactie
o Een prikkel moet sterk genoeg zijn  dan pas is er contractie
o Sterkere prikkel leidt niet tot grotere spierkracht, WEL meerdere
signalen naar motor units die de spier krachtiger doen
samenspannen

, - Drempelpotentiaal: kritische waarde die membraanpotentiaal moet bereiken om antwoord
uit te lokken (deze is ongeveer - 49 mV)
Motorische eindplaat:
- = Overgang zenuw – spier
- Elektrische prikkel komt hieraan en neurotransmitter (acetylcholine) wordt vrijgezet en
gekoppeld aan het membraan vd spier
o Elektrisch signaal wordt omgezet naar chemisch signaal  blaasjes die gevuld zijn
met acetylcholine gaan open en worden naar buiten toe getransporteerd
- Natrium-kalium pomp wordt geactiveerd  krijgen we terug potentiaalverschil en dit wordt
dus terug een elektrisch signaal
- Calcium is nodig (ook kalium en natrium) ≠ macronutriënten,
wel micronutriënten
- Tekort aan 1 v/d stoffen kan ook leiden tot een probleem bij
bvb spiercontractie
- Depolarisatie: omkeren v/d lading
o Als het voorbij is: repolarisatie (herstel)
o Als dit op 1 bepaald membraan gebeurt  naburig
gelegen gebied keert ook om. Dus dit veroorzaakt
depolarisatie van heel het membraan

Rust:
- Troponine en Tropomyosine verhinderen binding van actine en myosine

Spiercontractie:
- Vrijzetting van Ca2+
o Deze gaat binden op troponine
o Tropomyosine gaat dalen
o Binding actine en myosine
o Energie via ATP zorgt voor buigen van myosinekoppen
 ATP zorgt dat myosine de ‘knik’ kan maken  gebeurt 3 dimensioneel
- = Sliding filament theory

Verschillende soorten vezels:
- Type I  zorgen voor houding
o = Trage of ‘rode’ spiervezels
o = goed bestand tegen vermoeidheid
o = zuurstof systeem
o Veel mitochondrieën nodig (Dus ook veel vezels nodig)
o Vnl vetten gebruikt (triglyceriden)
- Type II  zorgen voor beweging
o = Snelle of ‘witte’ vezels
o Glycogeen  uit koolhydraten
o Minder mitochondriën
o Krachtige, maar kortere contracties
o Minder capillairen
o Meer lactaat accumulatie
o Subtypes
 Type IIa
 Type IIx
 Type IIb (niet bij mensen)
 Feit dat die andere functie hebben, wilt zeggen dat vezels anders zijn opgebouwd en dus ook
andere brandstoffen gaan gebruiken

,  Als je dus weet wat de functie v/e spier is, kan je ook weten welke type brandstof ze gebruiken

2. Energie uit voeding

Doel: gevarieerde trein maken zodat er verschillende soorten wagonnetjes in 1 treintje zitten

Voedingsmiddelen leveren voedingsstoffen:
- Bouwstoffen:
o Eiwitten
o Water
- Brandstoffen:
o Koolhydraten
o Vetten
- Beschermende stoffen:
o Vitaminen
o Mineralen
o Vezels

2.1 Bouwstoffen: eiwitten

= opgebouwd uit aminozuren

Bronnen:
- Dierlijke eiwitten zijn afkomstig van: Vlees en gevogelte, Vis en schaal en schelpdieren,
Eieren, Melkproducten
- Plantaardige eiwitten vinden we terug in:
o Peulvruchten zoals erwten, linzen, soja, gedroogde bonen,...
o Graanproducten zoals brood, pasta, rijst, mais, ...
o Noten en zaden zoals amandelen, walnoten, sesamzaad, ...
o Vegetarische producten zoals sojaproducten, Quorn, ...

Kwaliteit is afhankelijk v/h niveau waarop de voedingshoeveelheden essentiële aminozuren levert
die nodig zijn voor de gezondheid v/h lichaam, onderhoud en groei
- Dierlijke eiwitten (vb eieren, kaas, melk, vlees & vis) worden beschouwd als hoogwaardige of
complete eiwitten  Omdat ze voldoende hoeveelheden van essentiële aminozuren leveren
- Essentiële aminozuren = aminozuren die het lichaam niet zelf kan aanmaken

Functie:
- Bouwstenen: Opbouwen van cellen is de voornaamste taak
o Bij kinderen: verantwoordelijk voor gezonde groei
o Bij volwassenen: herstellen van weefsel en het behouden van spiermassa
- Kunnen energie leveren (1 g = 4 kcal) (is niet hun voornaamste rol)

Behoefte:
- Afhankelijk van:
o De leeftijd
o Het activiteitsniveau
o Het geslacht maar
o Vnl bepaald door het lichaamsgewicht.
- Gemiddeld: 1 g eiwit per kg lichaamsgewicht. (vb: Als je 70kg weegt, heb je 70g nodig)
o Bij kinderen en adolescenten kan dit meer zijn  lichaam is nog aan het groeien, ze
hebben veel bouwstenen nodig.
$5.30
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
elsvandenbroek Universiteit Antwerpen
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
37
Miembro desde
6 año
Número de seguidores
18
Documentos
20
Última venta
4 meses hace

3.3

4 reseñas

5
0
4
1
3
3
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes