100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary Ideals and Quotient Rings

Puntuación
-
Vendido
-
Páginas
20
Subido en
28-04-2021
Escrito en
2018/2019

Ideals and Quotient Rings cover definition and easily explain all important concepts with examples. They are complied by Professors

Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Grado

Información del documento

¿Un libro?
No
¿Qué capítulos están resumidos?
Types of rings
Subido en
28 de abril de 2021
Número de páginas
20
Escrito en
2018/2019
Tipo
Resumen

Temas

Vista previa del contenido

Ideals and Quotient Rings




Subject: ALGEBRA-III
Semester-IV
Lesson: Ideals and Quotient Rings
Lesson Developer: Divya Bhambri
College/Department: St. Stephen’s College,
University of Delhi




Institute of Life Long Learning, University of Delhi Page 1

, Ideals and Quotient Rings




Contents


1. Introduction ................................................................ 3
2. Ideals ......................................................................... 3
Examples of Ideals ............................................................ 3
Ideal Test ........................................................................ 5
3. Quotient Rings ............................................................. 8
4. Prime Ideals and Maximal Ideals .................................... 12
5. Principal Ideal Domain ................................................. 18
Exercises .......................................................................... 19
References........................................................................ 19
Suggested Readings ........................................................... 20




Institute of Life Long Learning, University of Delhi Page 2

, Ideals and Quotient Rings



1. Introduction
In this chapter, we define a quotient ring in a way analogous to the way in
which we defined quotient groups. The concept of an ideal is analogue of a normal
subgroup and helps us introduce the quotient rings. A quotient ring is also known
as Residue class ring or Factor ring. Further we establish the existence and find the
conditions under which quotient rings are integral domains or fields.

2. Ideals
We start this section by defining Ideals of a ring.

Definition: A subring 𝑆𝑆 of a ring 𝑅𝑅 is called a left ideal of 𝑅𝑅 if for every 𝑟𝑟 ∈ 𝑅𝑅 and
every 𝑎𝑎 ∈ 𝑆𝑆, we have 𝑟𝑟. 𝑎𝑎 ∈ 𝑆𝑆.

Definition: A subring 𝑆𝑆 of a ring 𝑅𝑅 is called a right ideal of 𝑅𝑅 if for every 𝑟𝑟 ∈ 𝑅𝑅 and
every 𝑎𝑎 ∈ 𝑆𝑆, we have 𝑎𝑎. 𝑟𝑟 ∈ 𝑆𝑆.

Definition: A subring 𝑆𝑆 of a ring 𝑅𝑅 is called a (two-sided) ideal of 𝑅𝑅 if for every
𝑟𝑟 ∈ 𝑅𝑅 and every 𝑎𝑎 ∈ 𝑆𝑆, we have both 𝑟𝑟. 𝑎𝑎, 𝑎𝑎. 𝑟𝑟 ∈ 𝑆𝑆.

Definition: An ideal 𝑆𝑆 of a ring 𝑅𝑅 is called a proper ideal of 𝑅𝑅 if 𝑆𝑆 is a proper
subset of 𝑅𝑅.

Value Addition

As clearly mentioned in the definition of an ideal, an ideal of a ring 𝑅𝑅 is always a
subring of 𝑅𝑅, whereas a subring neednot be an ideal of the ring.
Examples:
• Consider the ring (ℚ, + , . ).
Then it can be easily checked that (ℤ, +, . ) is a subring of (ℚ, + , . ).
But (ℤ, +, . ) is not an ideal of (ℚ, + , . ) as the product of a rational number
2 4
and an integer need not be an integer such as . 2 = ∉ ℤ.
3 3
• (ℝ , +, . ) is a subring of (ℂ , + , . ) that is not an ideal of (ℂ , + , . ). (Verify!)
Since the product of a real number and a complex number need not be a real
number.


Examples of Ideals:
1. Let 𝑅𝑅 be a ring. Then {0} & 𝑅𝑅 are ideals of 𝑅𝑅 known as the trivial ideals of 𝑅𝑅.

2. Consider the ring of integers ( ℤ, +, . ) and 𝐼𝐼 be the set of even integers, then
𝐼𝐼 is an ideal of ℤ.
Indeed, let 𝑥𝑥, 𝑦𝑦 ∈ 𝐼𝐼 and 𝑛𝑛 ∈ ℤ be arbitrary.
Then 𝑥𝑥 = 2𝑝𝑝 and 𝑦𝑦 = 2𝑞𝑞, for some 𝑝𝑝, 𝑞𝑞 ∈ ℤ.


Institute of Life Long Learning, University of Delhi Page 3
$3.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
orionnebula

Conoce al vendedor

Seller avatar
orionnebula
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
4 año
Número de seguidores
0
Documentos
2
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes