100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

ALL lectures for Quantitative research methods/ Kwalitatieve onderzoeksmethoden

Puntuación
-
Vendido
2
Páginas
13
Subido en
31-03-2021
Escrito en
2020/2021

ALL lectures for the course Quantitative research methods/ Kwalitatieve onderzoeksmethoden in one document, ready for you! :)

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
31 de marzo de 2021
Número de páginas
13
Escrito en
2020/2021
Tipo
Notas de lectura
Profesor(es)
-
Contiene
Todas las clases

Temas

Vista previa del contenido

COLLEGES KWANTITATIEVE ONDERZOEKSMETHODEN

College 1
Square root of Variance= Standard deviation




Relationship between two variables
Measures of relationship between two variables: covariance and correlation. This correlation can be:
 Positive
o The more advertisements are seen, the more toffees are bought
 Negative
o The more advertisements are seen, the less toffees are bought
 Absent

Multiply the 2 deviation scores cross-product deviations add them up and divide by N-1= covariance

Covariance
Covariance: the extent to which deviation of one variable go hand in hand with deviation of another
variable; this can be positive of negative




But: with covariance you cannot tell whether the relationship is strong or not. If you use other units (x10
for example), the size of the covariance also changes. So, we cannot use the covariance as a measure of
the strength of the relationship between 2 variables!

Standardizing the covariance
 To get a measure of the strength of the correlation between 2 variables, we convert the covariance
into standard units (standardization).
 Standard units= standard deviations.
 If we divide each deviation from the mean by the standard deviation, we get the distance to the
mean in standard deviations.
 In other words, we express the distance to the average in standard deviation= units of standard
deviations.
 In other words: we use z-scores!




If you first make z-scores of x and y and then calculate the covariance you get a standardized covariance.
Or: the Pearson product moment correlation coefficient.

Correlation
Correlation: the standardized covariance

, Pearson correlation coefficient
 Varies between -1 and 1
o -1 means a perfect negative relation
o 1 means a perfect positive relation
o 0 does not mean any relation

The correlation coefficient does not have a (causal) direction!

 r= .10 small effect (explains 1% of the variance)
 r= .30 medium effect (explains 9% of the variance)
 r= .50 major effect (explains 25% of the variance)

Pearson correlation coefficient and R2
The square of the correlation coefficient R2 is a measure of how much variance in one variable is explained
by the other.

Null hypothesis significance testing
1. Formulate H0 and H1 hypothesis.
a. H0, there is no difference.
2. Determine the significance level alpha- should be a meaningful decision.
3. Decide on analysis.
4. Compute p-value – the observed statistic would be at least as big as it is if the null hypothesis were
true.
a. Regression analysis in SPSS automatically gives the p-value.
5. Compare p to alpha.
a. If p is less or equal than alpha reject H0.
b. If p is higher than alpha accept H0.

Misconceptions about statistical significance
1. A significant result means that the effect is important.
a. NO: very small effects can be significant if the sample size N is very large.
2. A non-significant result means that the null hypothesis is true.
a. NO: rejecting the H1 does not mean that H0 is true- it means that the effect is not big
enough to be found (given the sample size).
3. A significant result means the null hypothesis is false.
a. NO: it means that if H0 is correct, it is (highly) unlikely to find this value of T (or another test
statistic).

Report p-value precisely, it gives insight on how incompatible the outcomes are with the H0.
You can also look to the confidence interval, is the zero between the lower and upper bound. No? Reject
H0.

College 2
When can we consider a relationship X Y to be causal?
$5.44
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
ElineRijnsburger Vrije Universiteit Amsterdam
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
526
Miembro desde
5 año
Número de seguidores
333
Documentos
54
Última venta
1 mes hace

4.4

50 reseñas

5
28
4
17
3
4
2
1
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes