100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

Solution Manual for Fundamentals of Communication Systems, 2nd Edition by John G. Proakis & Masoud Salehi, Chapters 2–15

Puntuación
-
Vendido
-
Páginas
602
Grado
A+
Subido en
05-02-2026
Escrito en
2025/2026

This document provides complete solutions for all problems in Fundamentals of Communication Systems, 2nd Edition by John G. Proakis and Masoud Salehi, covering Chapters 2–15. It includes detailed, step-by-step solutions for exercises on analog and digital communication, modulation techniques, signal processing, noise analysis, and system performance. The material is ideal for students and engineers seeking thorough understanding and practical problem-solving guidance in communication systems.

Mostrar más Leer menos
Institución
Solution Manual
Grado
Solution Manual

Vista previa del contenido

Proakis/Salehi/Fundamentals of Communications Systems 2E

© 2014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle
River, NJ 07458.
and fundamental concepts.Long Answer Questions: These questions may require students to elaborate on a particular legal principle or case, exploring various perspectives or discussing its implications in practice.2.3.
Skills




Solution Manual



Fundamentals of Communication Systems

John G. Proakis Masoud Salehi


Second Edition




2013

,Proakis/Salehi/Fundamentals of Communications Systems 2E

© 2014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle
River, NJ 07458.


Chapter 2 and fundamental concepts.Long Answer Questions: These questions may require students to elaborate on a particular legal principle or case,
exploring various perspectives or discussing its implications in practice.2.3. Skills




Problem 2.1


5
1. Π (2t + 5) = Π 2 t + . This indicates first we have to plot Π(2t) and then shift it to left by
2

Π (2t + 5)
ˆ

1


11 9
)
− 4 −4


2. ∞ Λ(t − n) is a sum of shifted triangular pulses. Note that the sum of the left and right side
of triangular pulses that are displaced by one unit of time is equal to 1, The plot is given below




t


3. It is obvious from the definition of sgn(t) that sgn(2t) = sgn(t). Therefore x3(t) = 0.

4. x4(t) is sinc(t) contracted by a factor of 10.

1


0.8


0.6


0.4


0.2


0


−0.2


−0.4
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

,Proakis/Salehi/Fundamentals of Communications Systems 2E

© 2014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle
River, NJ 07458.


Problem 2.2


and fundamental concepts.Long Answer Questions: These questions may require students to elaborate on a particular legal principle or case, exploring various perspectives or discussing its implications in practice.2.3.
Skills


1. x[n] = sinc(3n/9) = sinc(n/3).



1




0.8




0.6




0.4




0.2




0




−0.2



−0.4
−20 −15 −10 −5 0 5 10 15 20




n n
−1 1 −1 1
2. x[n] = Π . If − ≤ ≤ , i.e., −2 ≤ n ≤ 10, we have x[n] = 1.




1


0.9


0.8


0.7


0.6


0.5


0.4


0.3


0.2


0.1


0
−20 −15 −10 −5 0 5 10 15 20




n n
3. x[n] = u−1(n/4) − ( n − 1)u−1(n/4 − 1). For n < 0, x[n] = 0, for 0 ≤ n ≤ 3, x[n] = and
n n
for n ≥ 4, x[n] = − + 1 = 1.

, Proakis/Salehi/Fundamentals of Communications Systems 2E

© 2014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle
River, NJ 07458.

1


0.9


0.8


0.7


0.6


0.5


0.4


0.3


0.2


0.1


0
−5 0 5 10 15 20




and fundamental concepts.Long Answer Questions: These questions may require students to elaborate on a particular legal principle or case, exploring various perspectives or discussing its implications in practice.2.3.

Skills



Problem 2.3
x1[n] = 1 and x2[n] = cos(2πn) = 1, for all n. This shows that two signals can be different but
their sampled versions be the same.




Problem 2.4
Let x1[n] and x2[n] be two periodic signals with periods N1 and N2, respectively, and let N =
LCM(N1, N2), and define x[n] = x1[n] + x2[n]. Then obviously x1[n + N] = x1[n] and x2[n + N] =
x2[n], and hence x[n] = x[n + N], i.e., x[n] is periodic with period N.
For continuous-time signals x1(t) and x2(t) with periods T1 and T2 respectively, in general we
cannot find a T such that T = k1T1 = k2T2 for integers k1 and k2. This is obvious for instance if
T1 = 1 and T2 = π . The necessary and sufficient condition for the sum to be periodic is that T1 be a
rational number.




Problem 2.5
Using the result of problem 2.4 we have:

1. The frequencies are 2000 and 5500, their ratio (and therefore the ratio of the periods) is
rational, hence the sum is periodic.

2. The frequencies are 2000 and 5500 . Their ratio is not rational, hence the sum is not periodic.

3. The sum of two periodic discrete-time signal is periodic.

4. The fist signal is periodic but cos[11000n] is not periodic, since there is no N such that
cos[11000(n + N)] = cos(11000n) for all n. Therefore the sum cannot be periodic.

Escuela, estudio y materia

Institución
Solution Manual
Grado
Solution Manual

Información del documento

Subido en
5 de febrero de 2026
Número de páginas
602
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

$20.98
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
UKStudent1 Duke University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
6
Miembro desde
5 meses
Número de seguidores
0
Documentos
738
Última venta
1 semana hace

4.3

3 reseñas

5
2
4
0
3
1
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes