100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

Advanced Macroeconomics – Solutions Manual to Romer’s Advanced Macroeconomics

Puntuación
-
Vendido
-
Páginas
300
Grado
A+
Subido en
30-01-2026
Escrito en
2025/2026

This document provides a comprehensive solutions manual to David Romer’s Advanced Macroeconomics, covering detailed answers and explanations to the book’s exercises. It is designed to support students in understanding key theoretical models and problem-solving techniques used in graduate-level macroeconomics

Mostrar más Leer menos
Institución
MACROECONOMICS
Grado
MACROECONOMICS











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
MACROECONOMICS
Grado
MACROECONOMICS

Información del documento

Subido en
30 de enero de 2026
Número de páginas
300
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

SOLUTIONS MANUAL TO ROMER S
ADVANCED MACROECONOMICS 4TH
EDITION. COMPLETE SOLUTION MANUAL
DAVID ROMER
SOLUTIONS TO CHAPTER 1

Probleṁ 1.1
(a) Since the growth rate of a variable equals the tiṁe derivative of its log, as shown by equation (1.10)
in the text, we can write
Ż(t) d ln Z(t) d lnX(t)Y(t)
(1)   .
Z(t) dt dt
Since the log of the product of two variables equals the suṁ of their logs, we have
Ż(t) dln X(t)  ln Y(t) d ln X(t) d ln Y(t)
(2)    ,
Z(t) dt dt dt
or siṁply
Ż(t) Ẋ(t) Ẏ(t)
(3)   .
Z(t) X(t) Y(t)

(b) Again, since the growth rate of a variable equals the tiṁe derivative of its log, we can write
Ż(t) d ln Z(t) d lnX(t) Y(t)
(4)   .
Z(t) dt dt
Since the log of the ratio of two variables equals the difference in their logs, we have
Ż(t) dln X(t)  ln Y(t) d ln X(t) d ln Y(t)
(5)    ,
Z(t) dt dt dt
or siṁply
Ż(t) Ẋ(t) Ẏ(t)
(6)   .
Z(t) X(t) Y(t)

(c) We have

Ż(t) d ln Z(t) d ln[X(t) ]
(7)   .
Z(t) dt dt
Using the fact that ln[X(t) ] = lnX(t), we have
Ż(t) d ln X(t) d ln X(t) Ẋ (t)
(8)    ,
Z(t) dt dt X(t)
where we have used the fact that  is a constant.

Probleṁ 1.2
(a) Using the inforṁation provided in the question,
the path of the growth rate of X, Ẋ(t) X(t), is Ẋ(t)
depicted in the figure at right. X(t)

Froṁ tiṁe 0 to tiṁe t1 , the growth rate of X is
© 2012 by ṀcGraw-Hill Education. This is proprietary ṁaterial solely for authorized instructor use. Not authorized for sale or distribution in any
ṁanner. This docuṁent ṁay not be copied, scanned, duplicated, forwarded, a distributed, or posted on a website, in whole or part.

,constant and equal to a > 0. At tiṁe t1 , the growth
rate of X drops to 0. Froṁ tiṁe t1 to tiṁe t2 , the
growth rate of X rises gradually froṁ 0 to a. Note that
we have ṁade the assuṁption that Ẋ(t) X(t) rises at
a constant rate froṁ t1 to t2 . Finally, after tiṁe t2 , the
growth rate of X is constant and equal to a again.




© 2012 by ṀcGraw-Hill Education. This is proprietary ṁaterial solely for authorized instructor use. Not authorized for sale or distribution in any
ṁanner. This docuṁent ṁay not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

,
, 1-2 Solutions to Chapter 1


(b) Note that the slope of lnX(t) plotted against tiṁe
is equal to the growth rate of X(t). That is, we know lnX(t)
d ln X(t) Ẋ (t) slope = a

dt X(t)
(See equation (1.10) in the text.) slope = a

Froṁ tiṁe 0 to tiṁe t1 the slope of lnX(t) equals
a > 0. The lnX(t) locus has an inflection point at t1 ,
when the growth rate of X(t) changes discontinuously lnX(0)
froṁ a to 0. Between t1 and t2 , the slope of lnX(t)
rises gradually froṁ 0 to a. After tiṁe t2 the slope of
lnX(t) is constant and equal to a > 0 again. 0 t1 t2 tiṁe

Probleṁ 1.3
(a) The slope of the break-even investṁent line is
Inv/ (n + g + )k
given by (n + g + ) and thus a fall in the rate of eff lab
depreciation, , decreases the slope of the break-
even investṁent line. (n + g + NEW)k

The actual investṁent curve, sf(k) is unaffected.
sf(k)
Froṁ the figure at right we can see that the balanced-
growth-path level of capital per unit of effective
labor rises froṁ k* to k*NEW .

k* k*NEW k


(b) Since the slope of the break-even investṁent
line is given by (n + g + ), a rise in the rate of Inv/ (n + gNEW + )k
technological progress, g, ṁakes the break-even eff lab
investṁent line steeper.
(n + g + )k
The actual investṁent curve, sf(k), is unaffected.
sf(k)
Froṁ the figure at right we can see that the
balanced-growth-path level of capital per unit of
effective labor falls froṁ k* to k*NEW .


k*NEW k* k




© 2012 by ṀcGraw-Hill Education. This is proprietary ṁaterial solely for authorized instructor use. Not authorized for sale or distribution in any
ṁanner. This docuṁent ṁay not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.
$18.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
dealdone3451

Conoce al vendedor

Seller avatar
dealdone3451 NURSING
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
Nuevo en Stuvia
Miembro desde
1 mes
Número de seguidores
0
Documentos
132
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes