100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

MCAT 2026 EXAM BIOLOGICAL AND BIOCHEMICAL FOUNDATIONS OF LIVING SYSTEMS ACTUAL EXAM QUESTIONS AND CORRECT ANSWERS WITH RATIONALES GRADED A+ LATEST

Puntuación
-
Vendido
-
Páginas
48
Grado
A+
Subido en
27-01-2026
Escrito en
2025/2026

MCAT 2026 EXAM BIOLOGICAL AND BIOCHEMICAL FOUNDATIONS OF LIVING SYSTEMS ACTUAL EXAM QUESTIONS AND CORRECT ANSWERS WITH RATIONALES GRADED A+ LATEST

Institución
MCAT
Grado
MCAT











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
MCAT
Grado
MCAT

Información del documento

Subido en
27 de enero de 2026
Número de páginas
48
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

MCAT 2026 EXAM BIOLOGICAL AND BIOCHEMICAL
FOUNDATIONS OF LIVING SYSTEMS ACTUAL EXAM
QUESTIONS AND CORRECT ANSWERS WITH
RATIONALES GRADED A+ LATEST

Question 1 |




Which statement best explains why oxygen consumption increases when compound
| | | | | | | | |


X is added?
| | |




A. Compound X directly donates electrons to oxygen, increasing consumption. | | | | | | | |


B. Compound X increases proton motive force, stimulating ATP synthase and | | | | | | | | |


raising respiration.
| |


C. Compound X dissipates the proton gradient so the electron transport chain | | | | | | | | | |


operates faster to re-establish it.
| | | | |


D. Compound X inhibits the electron transport chain, causing cells to consume | | | | | | | | | |


more oxygen to compensate.
| | | |




Answer: C. |




Rationale: An uncoupler increases proton leak across the inner mitochondrial
| | | | | | | | |


membrane, reducing the proton motive force. The ETC responds by pumping more
| | | | | | | | | | | |


protons (i.e., increasing electron flow and oxygen consumption) to try to re- establish
| | | | | | | | | | | | |


the gradient. Option B is wrong — uncouplers lower the gradient, not increase it. A is
| | | | | | | | | | | | | | | |


incorrect — uncouplers don't donate electrons. D is wrong — inhibition would
| | | | | | | | | | | |


decrease electron flow and oxygen consumption.
| | | | | |




Question 2 |




Given the oxygen consumption numbers, what does the relative increase in oxygen
| | | | | | | | | | |


consumption with pyruvate/malate vs succinate after uncoupler indicate about upstream
| | | | | | | | | |


NADH vs FADH2 electron input?
| | | | |




A. NADH-linked respiration (Complex I entry) can produce a larger maximal | | | | | | | | |


electron flux than Complex II under these conditions.
| | | | | | | |

,B. FADH2 provides more electrons per substrate oxidation than NADH, so
| | | | | | | | |


succinate supports higher rates.
| | | |


C. Complex II is inhibited by uncoupling agents, causing a smaller increase with
| | | | | | | | | | |


succinate.
|


D. Succinate-driven respiration is more efficient and therefore shows less change | | | | | | | | |


with uncoupling.
| |




Answer: A. |




Rationale: Pyruvate/malate generates NADH that feeds electrons into Complex I;
| | | | | | | | |


succinate generates FADH2 feeding into Complex II. The larger jump with
| | | | | | | | | | |


pyruvate/malate (from 100 to 160) vs succinate (70 to 140) suggests the
| | | | | | | | | | | |


NADH/Complex I pathway supports a larger maximal flux under uncoupled
| | | | | | | | | |


conditions. B is false (both donate 2 electrons but enter at different complexes). C has
| | | | | | | | | | | | | | |


no basis here. D confuses efficiency with flux — uncoupling increases flux but
| | | | | | | | | | | | |


decreases coupling efficiency.
| | |




Question 3 |




If the researcher had added oligomycin (an ATP synthase inhibitor) before adding
| | | | | | | | | | |


compound X, what would you expect for oxygen consumption after adding the
| | | | | | | | | | | |


uncoupler?
|




A. Oxygen consumption would remain low after oligomycin and not increase with
| | | | | | | | | |


the uncoupler.
| |


B. Oxygen consumption would still increase after uncoupler despite oligomycin,
| | | | | | | |


because the uncoupler bypasses ATP synthase.
| | | | | |


C. Oxygen consumption would equal zero because both ATP synthase and proton
| | | | | | | | | |


gradient are blocked.
| | |


D. Oxygen consumption would be higher than with uncoupler alone.
| | | | | | | |




Answer: B. |




Rationale: Oligomycin blocks proton flow through ATP synthase, lowering
| | | | | | | |


respiration because pmf isn't used to make ATP and backpressure reduces ETC flux.
| | | | | | | | | | | | |


Adding an uncoupler creates new proton leak pathways independent of ATP
| | | | | | | | | | |

,synthase, dissipating the gradient and driving ETC activity again — so oxygen
| | | | | | | | | | |


consumption rises even with oligomycin present. Thus B is correct.
| | | | | | | | | |




Question 4 |




Which of the following best describes the effect of an increased proton leak on ATP
| | | | | | | | | | | | | |


yield per oxygen consumed (P/O ratio)?
| | | | | |




A. Proton leak increases the P/O ratio. | | | | |


B. Proton leak does not change the P/O ratio.
| | | | | | |


C. Proton leak decreases the P/O ratio. | | | | |


D. Proton leak initially increases then decreases the P/O ratio.
| | | | | | | |




Answer: C. |




Rationale: Proton leak causes protons to re-enter the matrix without passing through
| | | | | | | | | | |


ATP synthase, so fewer ATP molecules are generated per oxygen consumed (lower
| | | | | | | | | | | |


P/O). Therefore ATP yield per oxygen decreases.
| | | | | | |




Discrete conceptual questions Question
| | |




| 5
Which amino acid residue is most likely to act as a general base in an enzyme active
| | | | | | | | | | | | | | | |


site (i.e., accept a proton during catalysis) at physiological pH?
| | | | | | | | | |




A. Lysine
B. Aspartate
C. Phenylalanine
D. Tyrosine
Answer: B. |




Rationale: Aspartate has a carboxylate side chain (pKa ~3.9) and is deprotonated at
| | | | | | | | | | | |


physiological pH, allowing it to accept a proton transiently (act as a base).
| | | | | | | | | | | | |


Lysine is protonated at physiologic pH (pKa ~10.5) and usually acts as an acid or
| | | | | | | | | | | | | |


electrostatic residue. Phenylalanine is nonpolar. Tyrosine has a pKa ~10 and is
| | | | | | | | | | | |


mostly uncharged at pH 7.4.
| | | | |

, Question 6 |




A mutation changes a codon from UAU (tyrosine) to UAA (stop). What type of mutation
| | | | | | | | | | | | | |


is this and what is the most likely immediate effect?
| | | | | | | | | |




A. Missense mutation — single amino acid substituted, likely mild effect.
| | | | | | | | |


B. Nonsense mutation — premature termination leading to truncated protein.
| | | | | | | |


C. Silent mutation — no change in amino acid or function.
| | | | | | | | |


D. Frameshift mutation — altered reading frame downstream. | | | | | |




Answer: B. |




Rationale: UAA is a stop codon; changing a tyrosine codon (UAU) to UAA introduces a
| | | | | | | | | | | | | |


premature termination codon — a nonsense mutation — resulting in a truncated protein,
| | | | | | | | | | | | |


likely loss of function or nonsense-mediated decay.
| | | | | | |




Question 7 |




Which bond in DNA is most directly broken by DNase I?
| | | | | | | | | |




A. Phosphodiester backbone between nucleotides | | |


B. Glycosidic bond between base and sugar | | | | |


C. Hydrogen bonds between base pairs | | | |


D. Disulfide bonds in associated proteins | | | |




Answer: A. |




Rationale: DNase I is an endonuclease that cleaves phosphodiester bonds within the
| | | | | | | | | | |


DNA backbone. It does not cleave glycosidic bonds, hydrogen bonds (noncovalent),
| | | | | | | | | | |


or protein disulfide bonds.
| | | |




Question 8 |




During pulse-chase labeling with [35S]-methionine to study a secreted protein,
| | | | | | | | |


radioactivity first appears in the rough ER, then Golgi, then extracellular medium. Which
| | | | | | | | | | | | |


cellular process is this experiment is demonstrating?
| | | | | | |
$21.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Lectphilip West Virginia University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
178
Miembro desde
1 año
Número de seguidores
6
Documentos
19219
Última venta
2 días hace
WELCOME TO LECTPHILIP, A PLACE WHERE WE UNLOCK YOUR ACADEMIC OPPORTUNITIES

On this page, you find all documents, package deals and flashcards offered by seller lectphilip

4.1

28 reseñas

5
14
4
6
3
5
2
2
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes