100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

Linear Algebra Exercises | Transformations, Subspaces & Matrix Operations with Prof. Mumo

Puntuación
-
Vendido
-
Páginas
20
Grado
A+
Subido en
27-01-2026
Escrito en
2025/2026

This comprehensive exercise resource covers linear algebra concepts including linear transformations, vector subspaces, matrix operations, eigenvalues/eigenvectors, and applications in mathematical modeling and computational mathematics. • Exercises on linear transformations and their properties • Vector subspaces and basis calculations • Matrix operations and determinants • Eigenvalues, eigenvectors, and diagonalization • Applications in mathematical modeling and computation

Mostrar más Leer menos
Institución
Linear Algebra
Grado
Linear Algebra

Vista previa del contenido

Linear Algebra Exercises: Transformations and
Subspaces - Prof. Mumo (2026/2027)




Core Linear Algebra Concepts | Key Domains: Linear Transformations & Their Matrices, Kernel (Null
Space) & Image (Column Space), Basis & Dimension, Eigenvalues & Eigenvectors, Orthogonality &
Projections, and Vector Space Axioms | Expert-Aligned Structure | Multiple-Choice Exercise Format


Introduction


This structured Linear Algebra exercise set for 2026/2027 provides 55 multiple-choice questions
with correct answers and rationales. It focuses on the abstract and geometric understanding of
linear transformations, subspaces, and their properties, which are fundamental to advanced
mathematics, engineering, and data science.


Exercise Structure:


●​ Conceptual & Computational Exercise Bank: (55 MULTIPLE-CHOICE QUESTIONS)


Answer Format


All correct answers, vector space determinations, and computational results must appear in bold
and cyan blue, accompanied by concise rationales explaining the application of a definition or
theorem (e.g., "The set is a subspace because it is closed under addition and scalar multiplication"),
the steps of a calculation (e.g., finding a basis for the null space by row reduction), the properties of
a linear transformation (e.g., one-to-one if kernel is trivial), the geometric interpretation (e.g.,
eigenvectors indicate directions unchanged by the transformation), and why the alternative
multiple-choice options violate linear algebra principles or contain algebraic errors.



Conceptual & Computational Exercise Bank (55
Multiple-Choice Questions)
1. Which of the following sets is a subspace of ℝ³?

, A. {(x, y, z) | x + y + z = 1}

B. {(x, y, z) | x ≥ 0}

C. {(x, y, z) | x + y + z = 0}

D. {(x, y, z) | xyz = 0}

C. {(x, y, z) | x + y + z = 0}

Rationale: A subspace must contain the zero vector, be closed under addition, and closed under scalar
multiplication. Option C contains (0,0,0), and if u and v satisfy x+y+z=0, so does u+v and cu. Option A
fails (0,0,0) ∉ set; B is not closed under scalar multiplication (e.g., -1·(1,0,0) = (-1,0,0) ∉ set); D is not
closed under addition (e.g., (1,0,0)+(0,1,0)=(1,1,0) ∈ set, but (1,0,0)+(0,0,1)=(1,0,1) ∉ set since 1·0·1=0
is true—wait, actually (1,0,1) has product 0, so it is in D. However, (1,1,0) and (1,0,1) are in D, but their
sum (2,1,1) has product 2≠0, so not in D. Thus D is not closed under addition.

2. Let T: ℝ² → ℝ² be defined by T(x, y) = (2x, 3y). What is the matrix of T with respect to the
standard basis?

A. [[2, 0], [0, 3]]

B. [[2, 3], [0, 0]]

C. [[0, 2], [3, 0]]

D. [[1, 2], [3, 1]]

A. [[2, 0], [0, 3]]

Rationale: The standard matrix is formed by T(e₁) and T(e₂) as columns. T(1,0) = (2,0); T(0,1) = (0,3).
So the matrix is diagonal with entries 2 and 3. Other options do not map basis vectors correctly.

3. What is the dimension of the null space of the matrix A = [[1, 2, 3], [2, 4, 6]]?

A. 0

B. 1

C. 2

D. 3

C. 2

, Rationale: Row reduce A: R₂ ← R₂ - 2R₁ gives [[1,2,3],[0,0,0]]. Rank = 1. By Rank-Nullity Theorem,
dim(Nul A) = n - rank = 3 - 1 = 2. Options A, B, D contradict this fundamental theorem.

4. A linear transformation T: ℝⁿ → ℝᵐ is one-to-one if and only if:

A. The columns of its standard matrix span ℝᵐ

B. The kernel of T contains only the zero vector

C. n = m

D. T is onto

B. The kernel of T contains only the zero vector

Rationale: T is one-to-one ⇔ ker(T) = {0}. Option A describes onto (surjective); C is unnecessary (e.g., T:
ℝ²→ℝ³ can be one-to-one); D is the opposite property. The kernel condition is the precise
characterization.

5. Which vector is an eigenvector of A = [[2, 0], [0, 3]]?

A. (1, 1)

B. (1, 0)

C. (0, 1)

D. Both B and C

D. Both B and C

Rationale: A(1,0) = (2,0) = 2·(1,0); A(0,1) = (0,3) = 3·(0,1). So both are eigenvectors (with eigenvalues 2
and 3). (1,1) maps to (2,3), which is not a scalar multiple of (1,1), so not an eigenvector.

6. The set S = {(1,0,1), (0,1,1), (1,1,0)} in ℝ³ is:

A. Linearly dependent

B. A basis for ℝ³

C. Orthogonal

D. Contains the zero vector

B. A basis for ℝ³

Escuela, estudio y materia

Institución
Linear Algebra
Grado
Linear Algebra

Información del documento

Subido en
27 de enero de 2026
Número de páginas
20
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

$14.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
TutorAgness Chamberlain College Of Nursing
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
10
Miembro desde
1 año
Número de seguidores
5
Documentos
501
Última venta
3 semanas hace

4.5

2 reseñas

5
1
4
1
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes