100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

Mathematical Proofs Transition to Advanced Mathematics Study Guide 2025/ 2026 Practice Problems with Solution

Puntuación
-
Vendido
-
Páginas
269
Grado
A+
Subido en
26-01-2026
Escrito en
2025/2026

Master mathematical proofs and advanced math concepts with this study guide 2025/ 2026 with solution, featuring step-by-step explanations, practice problems, and strategies to build strong proof-writing skills for exams and coursework.

Mostrar más Leer menos
Institución
Proofs A Transition To Advanced Mathematics
Grado
Proofs a transition to advanced mathematics











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Proofs a transition to advanced mathematics
Grado
Proofs a transition to advanced mathematics

Información del documento

Subido en
26 de enero de 2026
Número de páginas
269
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Solution manual for mathematical
Solution
proofs
manual
a transition
for mathematical
to advanced
proofs
mathematics
Page
a transition
1 of 269
by
to albert
advanced
d polimeni
mathematics
gary chartrand
by albertand
d polimeni
ping.pdfgary chartrand and ping




Albert D. Polimeni, Gary
Chartrand, Ping Zhang - Solution
Manual for Mathematical Proofs
A Transition to
Advanced Mathematics




Page 1 Solution manualSolution
for mathematical
manual forproofs
mathematical
a transition
proofs
to advanced
a transition
mathematics
to advanced
bymathematics
albert d polimeni
by albert
gary dchartrand
polimeni and
garyping.pdf
chartrand and ping

, lOMoARcPSD|58847208




Solution manual for mathematical
Solution
proofs manual
a transition
for mathematical
to advanced mathematics
proofs
Page
a transition
2 of
by269
albert
to advanced
d polimenimathematics
gary chartrand
by albert
and ping.pdf
d polimeni gary chartrand and ping




Mathematical Proofs
A Transition to
Advanced Mathematics
Fourth Edition




Gary Chartrand
Western Michigan University



Albert D. Polimeni
State University of New York at Fredonia



Ping Zhang
Western Michigan University




Page 2 Solution manual for
Solution
mathematical
manualproofs
for mathematical
a transitionproofs
to advanced
a transition
mathematics
to advanced
by albert
mathematics
d polimeni
bygary
albert
chartrand
d polimeni
andgary
ping.pdf
chartrand and ping

, lOMoARcPSD|58847208




Solution manual for mathematical
Solution
proofs manual
a transition
for mathematical
to advanced mathematics
proofs
Page
a transition
3 of
by269
albert
to advanced
d polimenimathematics
gary chartrand
by albert
and ping.pdf
d polimeni gary chartrand and ping



Table of Contents
0. Communicating Mathematics
0.1 Learning Mathematics
0.2 What Others Have Said About Writing
0.3 Mathematical Writing
0.4 Using Symbols
0.5 Writing Mathematical Expressions
0.6 Common Words and Phrases in Mathematics
0.7 Some Closing Comments About Writing

1. Sets
1.1 Describing a Set
1.2 Subsets
1.3 Set Operations
1.4 Indexed Collections of Sets
1.5 Partitions of Sets
1.6 Cartesian Products of Sets Exercises for Chapter 1

2. Logic
2.1 Statements
2.2 Negations
2.3 Disjunctions and Conjunctions
2.4 Implications
2.5 More on Implications
2.6 Biconditionals
2.7 Tautologies and Contradictions
2.8 Logical Equivalence
2.9 Some Fundamental Properties of Logical Equivalence
2.10 Quantified Statements
2.11 Characterizations Exercises for Chapter 2

3. Direct Proof and Proof by Contrapositive
3.1 Trivial and Vacuous Proofs
3.2 Direct Proofs
3.3 Proof by Contrapositive
3.4 Proof by Cases
3.5 Proof Evaluations
Exercises for Chapter 3

4. More on Direct Proof and Proof by Contrapositive
4.1 Proofs Involving Divisibility of Integers
4.2 Proofs Involving Congruence of Integers
4.3 Proofs Involving Real Numbers
4.4 Proofs Involving Sets
4.5 Fundamental Properties of Set Operations
4.6 Proofs Involving Cartesian Products of Sets Exercises for Chapter 4

5. Existence and Proof by Contradiction
5.1 Counterexamples
5.2 Proof by Contradiction
iv


5.3 A Review of Three Proof Techniques

Page 3 Solution manual for
Solution
mathematical
manualproofs
for mathematical
a transitionproofs
to advanced
a transition
mathematics
to advanced
by albert
mathematics
d polimeni
bygary
albert
chartrand
d polimeni
andgary
ping.pdf
chartrand and ping

, lOMoARcPSD|58847208




Solution manual for mathematical
Solution
proofs manual
a transition
for mathematical
to advanced mathematics
proofs
Page
a transition
4 of
by269
albert
to advanced
d polimenimathematics
gary chartrand
by albert
and ping.pdf
d polimeni gary chartrand and ping


5.4 Existence Proofs
5.5 Disproving Existence Statements Exercises for Chapter 5

6. Mathematical Induction
6.1 The Principle of Mathematical Induction
6.2 A More General Principle of Mathematical Induction
6.3 The Strong Principle of Mathematical Induction
6.4 Proof by Minimum Counterexample Exercises for Chapter 6

7. Reviewing Proof Techniques
7.1 Reviewing Direct Proof and Proof by Contrapositive
7.2 Reviewing Proof by Contradiction and Existence Proofs
7.3 Reviewing Induction Proofs
7.4 Reviewing Evaluations of Proposed Proofs Exercises for Chapter 7

8. Prove or Disprove
8.1 Conjectures in Mathematics
8.2 Revisiting Quantified Statements
8.3 Testing Statements Exercises for Chapter 8

9. Equivalence Relations
9.1 Relations
9.2 Properties of Relations
9.3 Equivalence Relations
9.4 Properties of Equivalence Classes
9.5 Congruence Modulo n
9.6 The Integers Modulo n Exercises for Chapter 9

10. Functions
10.1 The Definition of Function
10.2 One-to-one and Onto Functions
10.3 Bijective Functions
10.4 Composition of Functions
10.5 Inverse Functions
Exercises for Chapter 10

11. Cardinalities of Sets
11.1 Numerically Equivalent Sets
11.2 Denumerable Sets
11.3 Uncountable Sets
11.4 Comparing Cardinalities of Sets
11.5 The Schroder-Bernstein Theorem¨ Exercises for Chapter 11

12. Proofs in Number Theory
12.1 Divisibility Properties of Integers
12.2 The Division Algorithm
12.3 Greatest Common Divisors
v


12.4 The Euclidean Algorithm
12.5 Relatively Prime Integers
12.6 The Fundamental Theorem of Arithmetic
12.7 Concepts Involving Sums of Divisors Exercises for Chapter 12



Page 4 Solution manual for
Solution
mathematical
manualproofs
for mathematical
a transitionproofs
to advanced
a transition
mathematics
to advanced
by albert
mathematics
d polimeni
bygary
albert
chartrand
d polimeni
andgary
ping.pdf
chartrand and ping
$21.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
KirschNurse Teachme2-tutor
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
6154
Miembro desde
1 año
Número de seguidores
25
Documentos
1883
Última venta
5 horas hace

4.8

717 reseñas

5
632
4
51
3
15
2
11
1
8

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes