100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

CERTNEXUS CERTIFIED ARTIFICIAL INTELLIGENCE PRACTITIONER (CAIP) PRACTICE EXAM

Puntuación
-
Vendido
-
Páginas
38
Grado
A+
Subido en
18-01-2026
Escrito en
2025/2026

CERTNEXUS CERTIFIED ARTIFICIAL INTELLIGENCE PRACTITIONER (CAIP) PRACTICE EXAM

Institución
Engineering Technology
Grado
Engineering technology











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Engineering technology
Grado
Engineering technology

Información del documento

Subido en
18 de enero de 2026
Número de páginas
38
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

CERTNEXUS CERTIFIED ARTIFICIAL INTELLIGENCE PRACTITIONER (CAIP) PRACTICE EXAM



1. What is the primary focus of the CertNexus CAIP certification?

A) Theoretical AI research

B) Implementing ethical AI solutions in business

C) Hardware design for AI systems

D) Academic AI algorithms only



ANSWER: B

EXPLANATION: The CAIP certification focuses on practical implementation of ethical,
responsible AI solutions that address business problems, not just theoretical concepts.



2. Which phase of the AI project lifecycle involves defining the business problem?

A) Data Preparation

B) Model Building

C) Problem Framing

D) Model Deployment



ANSWER: C

EXPLANATION: Problem Framing is the initial phase where business problems are defined
and translated into AI-solvable problems.



3. What is the primary purpose of a confusion matrix?

A) To visualize neural network architecture

B) To evaluate classification model performance

C) To preprocess data

D) To deploy models

,ANSWER: B

EXPLANATION: A confusion matrix is used to evaluate the performance of classification
models by showing true/false positives and negatives.



4. Which data preprocessing technique is used to handle missing values?

A) One-hot encoding

B) Normalization

C) Imputation

D) Tokenization



ANSWER: C

EXPLANATION: Imputation fills in missing values using various methods like mean,
median, or predictive modeling.



5. What does "feature engineering" refer to?

A) Creating new input features from existing data

B) Designing AI hardware

C) Building neural network architectures

D) Engineering software for AI deployment



ANSWER: A

EXPLANATION: Feature engineering involves creating new, meaningful features from raw
data to improve model performance.



6. Which algorithm is typically used for binary classification problems?

A) K-Means Clustering

,B) Linear Regression

C) Logistic Regression

D) Principal Component Analysis



ANSWER: C

EXPLANATION: Logistic regression is specifically designed for binary classification
problems (yes/no, true/false outcomes).



7. What is the purpose of regularization in machine learning?

A) To increase model complexity

B) To prevent overfitting

C) To speed up training

D) To improve data collection



ANSWER: B

EXPLANATION: Regularization techniques like L1/L2 regularization prevent overfitting by
penalizing model complexity.



8. Which evaluation metric is most appropriate for imbalanced classification problems?

A) Accuracy

B) F1-Score

C) Mean Squared Error

D) R-squared



ANSWER: B

EXPLANATION: F1-Score (harmonic mean of precision and recall) is better for imbalanced
datasets where accuracy can be misleading.

, 9. What is transfer learning in deep learning?

A) Training a model from scratch

B) Using a pre-trained model for a new related task

C) Transferring data between databases

D) Moving models between hardware



ANSWER: B

EXPLANATION: Transfer learning leverages knowledge from pre-trained models on large
datasets for new, related tasks with less data.



10. Which neural network architecture is best suited for image processing?

A) Recurrent Neural Network (RNN)

B) Convolutional Neural Network (CNN)

C) Multi-Layer Perceptron (MLP)

D) Autoencoder



ANSWER: B

EXPLANATION: CNNs are specifically designed for image processing with their ability to
capture spatial hierarchies.



11. What is the purpose of a validation set?

A) Final model evaluation

B) Hyperparameter tuning

C) Initial data exploration

D) Production deployment
$128.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
QUANKADA Liberty University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
315
Miembro desde
4 año
Número de seguidores
249
Documentos
3878
Última venta
2 semanas hace
Professionalacademictutor

On this page, you find all documents, package deals, and flashcards offered by seller

3.8

43 reseñas

5
25
4
4
3
2
2
6
1
6

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes