100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Resumen

Samenvatting AWV 2 tentamen

Puntuación
-
Vendido
-
Páginas
18
Subido en
15-01-2026
Escrito en
2024/2025

Samenvatting van alle colleges van het tentamen van AWV in jaar 2 (Geneeskunde Leiden)

Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
15 de enero de 2026
Número de páginas
18
Escrito en
2024/2025
Tipo
Resumen

Temas

Vista previa del contenido

Lecture 1 - Research questions

●​ Classification of medical research
○​ Etiology (risk factor)
○​ Diagnosis
○​ Treatment
○​ Prognosis
●​ Research question components → PICO
○​ Patient (population)
○​ Intervention
○​ Comparator
○​ Outcome

Lecture 2 - Randomized controlled trial

Outcomes

●​ Regression to the mean
○​ If the value is at its highest point it can only go down
●​ Outcome model
○​ Treatment (T)
○​ Natural course (NC)
■​ Regression to the mean
○​ Extraneous factors (EF)
■​ Other treatments
■​ Going to the gym
■​ Stop smoking
○​ Error Processes (V)
■​ Natural variation in the medical device used
●​ Possible outcomes
○​ Outcome with treatment
■​ T + NC + EF + V
○​ Outcome without treatment
■​ NC + EF + V
●​ Comparison
○​ Compare 2 (or more) groups
○​ Groups should be compara ble with respect to NC, EF, V
○​ Differ only with respect to treatment

Design elements

●​ Randomisation
○​ Randomly allocation of treatment
○​ Concealment of treatment allocation
■​ Physician doesn’t know which treatment he’s describing
■​ Result → treatment allocation independent of patient characteristics
●​ Blinding

, ○​ Participants don’t know which treatment they receive
■​ Aims to keep the groups comparable during follow-up
■​ This also applies to physicians, nurses, relatives, etc.
○​ Placebo
■​ Tablet which tastes/looks/smells like the active treatment, but does not
contain the active compound
■​ Sometimes difficult → surgery, physiotherapy
○​ Active comparator
■​ Compare different types of drugs
○​ Blinded outcome assessment
■​ The one who ‘measures’ the outcome should not know about
treatment status
●​ Standardisation
○​ Standardisation of intervention, concomitant care & outcome assessment
■​ Minimize error processes
■​ Improve interpretability of treatment effect

Comparability

●​ Start of treatment
○​ Randomisation
○​ Concealment of allocation
●​ Follow-up
○​ Blinding of patient & physicians
●​ Outcome assessment
○​ Blinding of outcome assessor

Equipoise → The genuine uncertainty about which treatment is better

●​ Ethics
○​ Is it ethical to give a placebo when a treatment which is known to be effective
is also available?
○​ Is it ethical to give a new treatment which is known to be uneffective?
●​ Relevant comparison
○​ What is the clinical decision:
■​ Researched drug vs. no treatment
■​ Researched drug vs. other drug

Primary analysis

●​ Intention-to-treat
○​ Purpose → include all participants in the groups to which they were originally
assigned, regardless of whether they completed the trial
●​ Per-protocol
○​ Purpose → only analyze the participants who completed the study as per
protocol

Lecture 3 - Sample size calculations

, Why?

●​ Aim → comparing two treatments
○​ Patients are recruited to the study, and randomized to treatment A or B
●​ How many patients needed?
○​ Too few → not able to detect differences
○​ Too many → high costs & non-ethical

Deciding sample size

●​ Practical
○​ Number of eligible patients treated at a center
○​ Number of patients willing to participate
○​ Time & money
●​ Statistical
○​ How big of an effect can be detected with a given number of patients?

Hypothesis testing

1.​ Decide on a null hypothesis (H0) about the population
○​ Example → there is no difference between the two groups
2.​ Take a representative sample of the population
3.​ Calculate the observed difference in the sample
4.​ Calculate the p-value: the probability to observe at least this difference if H0 is true
5.​ If p-value is smaller than a prespecified value α we reject H0
○​ Value α is called the significance level

Type I & II errors

●​ Type I → false positive
○​ Rejecting a true null hypothesis
○​ Controlled by the significance level (α)
○​ Example: concluding a new drug works when it actually doesn’t
●​ Type II → false negative
○​ Failing to reject a false null hypothesis
○​ Controlled by ß
○​ Concluding a drug doesn’t work when it actually does
●​ Statistical power
○​ 1 - probability of a type II error = 1 - ß

Power → The probability of finding a significant effect in your sample when the effect is
really present in the population

●​ Depends on:
○​ Relevant difference (effect size)
○​ Sample size
○​ Variance / standard deviation (more variation = smaller power)
○​ Significance level α
●​ Goal
$7.16
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
rosahannahelisadevos

Conoce al vendedor

Seller avatar
rosahannahelisadevos Universiteit Leiden
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
Nuevo en Stuvia
Miembro desde
2 días
Número de seguidores
0
Documentos
3
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes