100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Metric Space Topology: Examples, Exercises and Solutions (Cheung, 2024)

Puntuación
-
Vendido
-
Páginas
428
Grado
A+
Subido en
12-01-2026
Escrito en
2025/2026

INSTANT DOWNLOAD PDF — Metric Space Topology: Examples, Exercises and Solutions* (2024) by Wing-sum Cheung provides rigorous, step-by-step answers to a wide range of problems in metric spaces, open and closed sets, convergence, continuity, compactness, completeness, and connectedness. Designed for undergraduate and graduate students in mathematics, it’s a clear and structured companion for mastering the foundations of topology through applied examples. metric space topology solutions, wing-sum cheung 2024 answers, topology examples and exercises, compactness and continuity problems, convergence in metric spaces, mathematical analysis solutions, open and closed sets exercises, topology for undergraduates, metric space solved problems, advanced math textbook solutions #Topology, #MetricSpaces, #MathSolutions, #WingSumCheung, #AdvancedMathematics, #MathematicalAnalysis, #TopologyExercises, #GraduateMathematics, #TextbookSolutions, #PureMath

Mostrar más Leer menos
Institución
Pathophysiology
Grado
Pathophysiology











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Pathophysiology
Grado
Pathophysiology

Información del documento

Subido en
12 de enero de 2026
Número de páginas
428
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

, Contents


Preface vii

A Note on the Convention xi
About the Author xiii

1. Metric Spaces 1
1.1 Definitions and Examples .............................................................. 1
Exercise 1.1: Part A ..................................................... 10
Exercise 1.1: Part B ..................................................... 14
1.2 Topology of Metric Spaces.......................................................... 36
Exercise 1.2: Part A ..................................................... 50
Exercise 1.2: Part B ..................................................... 64
1.3 Compactness ................................................................................ 85
Exercise 1.3: Part A ..................................................... 90
Exercise 1.3: Part B ..................................................... 94
1.4 Compactness in the Euclidean Space Rn ...................................................... 108
Exercise 1.4: Part A ................................................... 115
Exercise 1.4: Part B ................................................... 118

2. Limits and Continuity 129
2.1 Convergence in a Metric Space..................................................129
Exercise 2.1: Part A ................................................... 134
Exercise 2.1: Part B ................................................... 138
2.2 Complete Metric Spaces.............................................................145
Exercise 2.2: Part A ................................................... 150
Exercise 2.2: Part B ................................................... 155
2.3 Continuity and Homeomorphism ...............................................172
Exercise 2.3: Part A ................................................... 193
Exercise 2.3: Part B ................................................... 204

3. Connectedness 233
3.1 Connectedness.............................................................................233
Exercise 3.1: Part A ................................................... 245
Exercise 3.1: Part B ................................................... 249


Xv

,Xvi Metric Space Topology: Examples, Exercises and Solutions


3.2 Path-connectedness .................................................................... 266
Exercise 3.2: Part A.................................................... 278
Exercise 3.2: Part B.................................................... 281

4. Uniform Continuity 295
4.1 Uniform Continuity .................................................................... 296
Exercise 4.1: Part A.................................................... 301
Exercise 4.1: Part B.................................................... 309
4.2 Contraction and Beach’s Fixed Point Theorem...................... 322
Exercise 4.2: Part A.................................................... 330
Exercise 4.2: Part B.................................................... 332

5. Uniform Convergence 349
5.1 Sequence of Functions ................................................................ 349
Exercise 5.1: Part A.................................................... 368
Exercise 5.1: Part B.................................................... 377
5.2 Series of Functions ..................................................................... 389
Exercise 5.2: Part A.................................................... 395
Exercise 5.2: Part B.................................................... 401

Bibliography 421

Index 423

, Chapter 1

Metric Spaces

In this chapter, the basic concept of metric spaces will be introduced.
Naively, they are simply nonempty sets equipped with a structure
called metric. For the less matured students, at the beginning, this
structure may appear to be a bit abstract and difficult to master.
But in practice, this seemingly new concept is nothing more than
a tiny little abstractization of the familiar space Rn and so all one
needs to do is that whenever one needs to work on a problem in an
abstract metric space, one first looks at the problem on Rn, then one
would be able to see the clue of how to proceed in the general case.
In fact, in general, the most effective way to master a new concept
in any branch of mathematics is to keep in mind a couple of typical
concrete examples and think of these examples all the time. It is just
that easy.


1.1 Definitions and Examples
Definition 1.1.1. Let X be a nonempty set. A metric ton X is a
real-valued function
D: X × X → R
Satisfying
(M1) d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y,
(M2) (Symmetry) d(x, y) = d(y, x),
(M3) (Triangle inequality) d (x, y) ≤ d(x, z) + d (z, y)
For all x, y, z ∈ X. Given x, y ∈ X, d(x, y) is also known as the
distance between x and y with respect to do. The pair (X, d) is
called a metric space and elements in X are referred to as points in
X. For the sake of convenience, in case there is a clearly defined
metric d on X, we shall simply call X a metric space.


1
$38.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
LECTJULIESOLUTIONS Havard School
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
14
Miembro desde
1 año
Número de seguidores
1
Documentos
443
Última venta
2 días hace
JULIESOLUTIONS ALL STUDY GUIDES

You will get solutions to all subjects in both assignments and major exams. Contact me for any assisstance. Good luck! Simple well-researched education material for you. Expertise in Nursing, Mathematics, Psychology, Biology etc,. My Work contains the latest, updated Exam Solutions, Study Guides, Notes 100% verified Guarantee .

5.0

3 reseñas

5
3
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes