100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

ISYE 6501 Midterm 2 Certification Exam Questions and Answers

Puntuación
-
Vendido
-
Páginas
10
Grado
A+
Subido en
10-01-2026
Escrito en
2025/2026

ISYE 6501 Midterm 2 Certification Exam Questions and Answers

Institución
ISYE 6501
Grado
ISYE 6501









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
ISYE 6501
Grado
ISYE 6501

Información del documento

Subido en
10 de enero de 2026
Número de páginas
10
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

ISYE 6501 Midterm 2 Certification
Exam Questions and Answers


What is a key assumption of Markov chain? - Answer-It is memoryless, the state
transitions only depend on the most recent state, though most systems do not exhibit
this property

How to deal with missing data? - Answer-1.) throw it away
2.) use categorical variables to indicate missing data
3.) imputation - mean/mode
4.) imputation - regression
5.) imputation - regression + perturbation

Pros and cons of throwing away missing data - Answer-Pros: not potentially introducing
errors, easy to implement
Cons: Don't want to lose too many data points, potential for censored or biased missing
data

Pros and cons of using categorical variables for missing data - Answer-Missing data
could be biased, so need to include interaction variables for all other data points,
basically creating two models, one with the data and one with the missing data

Pros and cons of imputation with mean and mode - Answer-Pros: hedge against being
too wrong, easy to compute
Cons: biased imputation, if certain group has missing data, the mean may not be truly
representative

Pros and cons of imputation through regression - Answer-Pros: reduce or eliminate
problem of bias
Cons: complex to build, fit, validate, and test for missing data; does not capture all the
variability (hence perturbation), and using the data twice (one for missing data and one
for modeling) could lead to more overfitting

Imputation should not be used when more than ___% of data is missing - Answer-5%;
use indicator or categorical variables

What are the three main components of optimization? - Answer-Variables, Constraints,
and Objective function

What are variables in optimization model? - Answer-decisions that the optimization
solver will pick the best value for; must be something we can alter or change

, What are constraints in optimization model? - Answer-restrictions on the variables
values; important b/c software does math, but doesn't understand reality; must contain
at least one variable or else it is just a statement

What is the objective function in optimization model? - Answer-measure the quality of
the solution, the set of variables; we typically want to min or max the function

Feasible vs Optimal solution - Answer-Feasible is a possible set of variable values that
satisfy all constraints

Optimal is the set of variable values with the best objective function

What are three ways to customize statistical and ML models? - Answer-1.) add custom
constraints - ex: a0 = 0 so when all factors are zero, it should be zero
2.) select features - set a new variable with the total equating to a number of features to
include
3.) modify the objective function - linear regression model, instead of error squared do
3/2

How to account for randomness or uncertainty in optimization models? - Answer-1.)
model conservatively - add in additional factors to buffer optimization models such as
adding additional workers to call center variable theta even if we are minimizing the
number of workers to make sure we are not estimating
2.) Scenario Modeling - define multiple scenarios and optimize over all of them using
the probability of each scenario occurring and find the expected value (ex. costs)

Other approaches of optimization besides mathematical programming models - Answer-
1. Dynamic program
2. Stochastic dynamic program
3. Markov decision process

What are the main two steps in optimization? - Answer-1.) Initialization create first
solution, to pick values for all variables
2.) repeat two stage process - find an improving direction t, using a step size theta to
move along it; new solution = old solution + theta*t

Stop when solution doesn't change

Examples of when data could be missing - Answer-Software issues, data not being
collected, sensor failure, data entry failure, data not being available, data is wrong and
not fixable, removed for legal/privacy reasons, data purposely removed maliciously

If there are multiple variables with missing data, but most data points are missing one
variable, how might you go about imputing them? - Answer-One approach is MICE
(multiple imputation by chained equation) - iteratively imputes one variable based on
$16.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
victoryguide stuvia
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
22
Miembro desde
1 año
Número de seguidores
1
Documentos
2967
Última venta
1 mes hace

3.7

7 reseñas

5
4
4
0
3
1
2
1
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes