100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

NYSTCE CST 245 ALL 2026 CORE EXAM TEST QUESTIONS AND ANSWERS GUARANTEE A+

Puntuación
-
Vendido
-
Páginas
22
Grado
A+
Subido en
07-01-2026
Escrito en
2025/2026

NYSTCE CST 245 ALL 2026 CORE EXAM TEST QUESTIONS AND ANSWERS GUARANTEE A+

Institución
NYSTCE CST 245
Grado
NYSTCE CST 245










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
NYSTCE CST 245
Grado
NYSTCE CST 245

Información del documento

Subido en
7 de enero de 2026
Número de páginas
22
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

NYSTCE CST 245 ALL 2026 CORE EXAM TEST QUESTIONS
AND ANSWERS GUARANTEE A+
✔✔Text comprehension - ✔✔the reason for reading: understanding what is read, with
readers reading actively (engaging in the complex process of making sense from text)
and with purpose (for learning, understanding, or enjoyment).

✔✔Vocabulary - ✔✔the words a reader knows. Listening vocabulary refers to the words
a person knows when hearing them in oral speech. Speaking vocabulary refers to the
words we use when we speak. Reading vocabulary refers to the words a person knows
when seeing them in print. Writing vocabulary refers to the words we use in writing.

✔✔Word parts - ✔✔include affixes (prefixes and suffixes), base words, and word roots.

✔✔Word roots - ✔✔words from other languages that are the origin of many English
words. About 60% of all English words have Latin or Greek origins.

✔✔reflexive property - ✔✔a segment or angle is always congruent to itself

✔✔segment bisection - ✔✔a point, segment, ray, or line that divides a segment into 2
congruent segments

✔✔midpoint - ✔✔the point where a segment is bisected; cuts the segment into 2
congruent parts

✔✔segment trisection - ✔✔two points, segments, rays, lines, or any combination
thereof that divide a segent into 3 congruent segments

✔✔angle bisection - ✔✔a ray that cuts an angle into 2 congruent angles

✔✔angle trisection - ✔✔2 rays that divide an angle between 3 congruent angles

✔✔theorem: complements of the same angle are congruent - ✔✔If 2 angles are each
complementary to a 3rd angle then they're congruent to each other.

✔✔theorem: complements of congruent angles are congruent - ✔✔If 2 angles are
complementary to 2 other congruent angles, then they're congruent.

✔✔theorem: supplements of the same angle are congruent - ✔✔If 2 angles are each
supplementary to a 3rd angle, then they're congruent.

✔✔theorem: supplements of congruent angles are congruent - ✔✔If 2 angles are
supplementary to 2 other congruent angles, then they're congruent.

,✔✔theorem: segment addition (3 total segments) - ✔✔If a segment is added to 2
congruent segment, then the sums are congruent

✔✔theorem: angle addition (3 total angles) - ✔✔If an angle is added to two congruent
angles, then the sums are congruent.

✔✔theorem: segment addition (4 total segments) - ✔✔If 2 congruent segments are
added to 2 other congruent segments, then the sums are congruent

✔✔theorem: angle addition (4 total angles) - ✔✔If 2 congruent angles are added to 2
other congruent angles, then the sums are congruent

✔✔theorem: segment subtraction (3 total segments) - ✔✔If a segment is subtracted
from 2 congruent segments, then the differences are congruent.

✔✔theorem: angle subtraction (3 total angles) - ✔✔If an angle is subtracted from 2
congruent angles, then the differences are congruent.

✔✔theorem: segment subtraction (4 total segments) - ✔✔If 2 congruent segments are
subtracted from 2 other congruent segments, then the differences are congruent.

✔✔theorem: angle subtraction (4 total angles) - ✔✔If 2 congruent angles are subtracted
from 2 other congruent angles, then the differences are congruent.

✔✔theorem: like multiples - ✔✔If 2 segments or angles are congruent, then their like
multiples are congruent.
EXAMPLE: If you have 2 congruent angles, then 3 times one angle will equal 3 times
the other angle.

✔✔theorem: like division - ✔✔If 2 segments or angles are congruent, then their like
divisions are congruent.
EXAMPLE: If you have 2 congruent segments, then 1/4 of one segment equals 1/4 of
the other segment.

✔✔postulate: substitution - ✔✔If 2 segments are equal to the same segment, then
they're equal to each other.

✔✔vertical angles - ✔✔When 2 lines intersect to form an "X", angles on the opposite
sides of the "X."

✔✔theorem: vertical angles are congruent - ✔✔If 2 angles are vertical angles, then
they're congruent.

, ✔✔transitive property (for 3 segments/angles) - ✔✔If 2 segments or angles are each
congruent to a 3rd segment or angle, then they're congruent to each other.
EXAMPLE: If ∠ A ≅ ∠ B, and ∠ B ≅ ∠ C, then ∠ A ≅ ∠ C

✔✔transitive property (for 4 segments/angles) - ✔✔If 2 segments or angles are
congruent to congruent to congruent segments or angles, then they're congruent to
each other.
EXAMPLE: Segment AB ≅ Segment CD, Segment CD ≅ Segment EF, and Segment
EF ≅ Segment GH, then Segment AB ≅ GH

✔✔substitution property - ✔✔If 2 geometric objects (segments, angles, triangles, etc.)
are congruent an you have a statement involving one of them, you can replace the one
with the other.
EXAMPLE: If ∠X ≅ ∠Y, and ∠Y is supplementary to ∠Z, then ∠X is supplementary to
∠Z.

✔✔triangle inequality principle - ✔✔the sum of the lengths of any 2 sides of a triangle
must be greater than the length of the 3rd side.

✔✔median of a triangle - ✔✔a segment that goes from one of the triangle's vertices to
the midpoint of the opposite side

✔✔centroid - ✔✔where the 3 medians of a triangle intersect; the triangle's balancing
point or center of gravity

✔✔incenter - ✔✔the point of concurrency of the three angle bisectors of a triangle

✔✔circumcenter - ✔✔where the 3 perpendicular bisectors of the sides of a triangle
intersect; the circumcenter is the center of a circle circumscribed about (drawn around)
the triangle

✔✔orthocenter - ✔✔where the triangle's 3 altitudes intersect

✔✔congruent triangles - ✔✔triangles in which all pairs of corresponding sides and
angles are congruent

✔✔theorem: side-side-side (SSS) - ✔✔If 3 sides of one triangle are congruent to 3
sides of another triangle, then the triangles are congruent

✔✔theorem: side-angle-side (SAS) - ✔✔If 2 sides and the included angle of one
triangle are congruent to 2 sides and the included angle of another triangle, then the
triangles are congruent
$12.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
BOARDWALK Havard School
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
182
Miembro desde
1 año
Número de seguidores
6
Documentos
24136
Última venta
21 horas hace
BOARDWALK ACADEMY

Ace Your Exams With Top Quality study Notes And Paper✅✅ ALL ACADEMIC MATERIALS AVAILABLE WITH US✅✅ LEAVE A REVIEW SO THAT WE CAN LOOK AND IMPROVE OUR MATERIALS.✅✅ WE ARE ALWAYS ONLINE AND AVAILABLE DONT HESITATE TO CONTACT US FOR SYUDY GUIDES!!✅✅ EVERYTHING IS GRADED A+✅✅ COLOUR YOUR GRADES WITH US , WE ARE HERE TO HELP YOU DONT BE RELACTANT TO REACH US

3.7

33 reseñas

5
14
4
6
3
7
2
0
1
6

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes